Moth-Flame Optimization algorithm is an emerging meta-heuristic published in 2015. This book provides in-depth analysis of this algorithm and the existing methods to cope with challenges. It proposes improvements, variants, and hybrids of this algorithm. Applications are also covered to demonstrate the applicability of methods in this book.
"Sinopsis" puede pertenecer a otra edición de este libro.
Seyedali Mirjalili is a Professor at Torrens University Center for Artificial Intelligence Research and Optimization and internationally recognized for his advances in nature-inspired Artificial Intelligence (AI) techniques. He is the author of more than 300 publications including five books, 250 journal articles, 20 conference papers, and 30 book chapters. With more than 50,000 citations and H-index of 75, he is one of the most influential AI researchers in the world. From Google Scholar metrics, he is globally the most cited researcher in Optimization using AI techniques, which is his main area of expertise. Since 2019, he has been in the list of 1% highly-cited researchers and named as one of the most influential researchers in the world by Web of Science. In 2021, The Australian newspaper named him as the top researcher in Australia in three fields of Artificial Intelligence, Evolutionary Computation, and Fuzzy Systems. He is a senior member of IEEE and is serving as an editor of leading AI journals including Neurocomputing, Applied Soft Computing, Advances in Engineering Software, Computers in Biology and Medicine, Healthcare Analytics, and Applied Intelligence.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 12,54 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoGRATIS gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Books From California, Simi Valley, CA, Estados Unidos de America
hardcover. Condición: Fine. Nº de ref. del artículo: mon0003227462
Cantidad disponible: 1 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-290865
Cantidad disponible: 1 disponibles
Librería: SMASS Sellers, IRVING, TX, Estados Unidos de America
Condición: New. Brand New Original US Edition. Customer service! Satisfaction Guaranteed. Nº de ref. del artículo: ASNT3-290865
Cantidad disponible: 1 disponibles
Librería: ALLBOOKS1, Direk, SA, Australia
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Nº de ref. del artículo: SHAK135288
Cantidad disponible: 5 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEOCT25-135288
Cantidad disponible: 5 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 185. Nº de ref. del artículo: B9781032070919
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Moth-Flame Optimization algorithm is an emerging meta-heuristic and has been widely used in both science and industry. Solving optimization problem using this algorithm requires addressing a number of challenges, including multiple objectives, constraints, binary decision variables, large-scale search space, dynamic objective function, and noisy parameters.Handbook of Moth-Flame Optimization Algorithm: Variants, Hybrids, Improvements, and Applications provides an in-depth analysis of this algorithm and the existing methods in the literature to cope with such challenges.Key Features:Reviews the literature of the Moth-Flame Optimization algorithmProvides an in-depth analysis of equations, mathematical models, and mechanisms of the Moth-Flame Optimization algorithmProposes different variants of the Moth-Flame Optimization algorithm to solve binary, multi-objective, noisy, dynamic, and combinatorial optimization problemsDemonstrates how to design, develop, and test different hybrids of Moth-Flame Optimization algorithmIntroduces several applications areas of the Moth-Flame Optimization algorithmThis handbook will interest researchers in evolutionary computation and meta-heuristics and those who are interested in applying Moth-Flame Optimization algorithm and swarm intelligence methods overall to different application areas. 348 pp. Englisch. Nº de ref. del artículo: 9781032070919
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9781032070919_new
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L1-9781032070919
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Moth-Flame Optimization algorithm is an emerging meta-heuristic and has been widely used in both science and industry. Solving optimization problem using this algorithm requires addressing a number of challenges, including multiple objectives, constraints, binary decision variables, large-scale search space, dynamic objective function, and noisy parameters.Handbook of Moth-Flame Optimization Algorithm: Variants, Hybrids, Improvements, and Applications provides an in-depth analysis of this algorithm and the existing methods in the literature to cope with such challenges.Key Features:Reviews the literature of the Moth-Flame Optimization algorithmProvides an in-depth analysis of equations, mathematical models, and mechanisms of the Moth-Flame Optimization algorithmProposes different variants of the Moth-Flame Optimization algorithm to solve binary, multi-objective, noisy, dynamic, and combinatorial optimization problemsDemonstrates how to design, develop, and test different hybrids of Moth-Flame Optimization algorithmIntroduces several applications areas of the Moth-Flame Optimization algorithmThis handbook will interest researchers in evolutionary computation and meta-heuristics and those who are interested in applying Moth-Flame Optimization algorithm and swarm intelligence methods overall to different application areas. Nº de ref. del artículo: 9781032070919
Cantidad disponible: 1 disponibles