"authoritative, funny, and concise" Steven Strogatz, Professor of Applied Mathematics, Cornell University.
The brain has always had a fundamental advantage over conventional computers: it can learn. However, a new generation of artificial intelligence algorithms, in the form of deep neural networks, is rapidly eliminating that advantage. Deep neural networks rely on adaptive algorithms to master a wide variety of tasks, including cancer diagnosis, object recognition, speech recognition, robotic control, chess, poker, backgammon and Go, at super-human levels of performance. In this richly illustrated book, key neural network learning algorithms are explained informally first, followed by detailed mathematical analyses. Topics include both historically important neural networks (perceptrons, Hopfield nets, Boltzmann machines and backpropagation networks), and modern deep neural networks (variational autoencoders, convolutional networks, generative adversarial networks, and reinforcement learning using SARSA and Q-learning). Online computer programs, collated from open source repositories, give hands-on experience of neural networks, and PowerPoint slides provide support for teaching. Written in an informal style, with a comprehensive glossary, tutorial appendices (e.g. Bayes' theorem, maximum likelihood estimation), and a list of further readings, this is an ideal introduction to the algorithmic engines of modern artificial intelligence.
Dr James V Stone is an Honorary Associate Professor at the University of Sheffield, England.
"Sinopsis" puede pertenecer a otra edición de este libro.
"Artificial Intelligence Engines will introduce you to the rapidly growing field of deep learning networks: how to build them, how to use them; and how to think about them. James Stone will guide you from the basics to the outer reaches of a technology that is changing the world."
Professor Terrence Sejnowski, Director of the Computational Neurobiology Laboratory, Salk Institute, USA. Author of The Deep Learning Revolution, MIT Press, 2018.
"This book manages the impossible: it is a fun read, intuitive and engaging, lighthearted and delightful, and cuts right through the hype and turgid terminology. Unlike many texts, this is not a shallow cookbook for some particular deep learning program-du-jure. Instead, it crisply and painlessly imparts the principles, intuitions and background needed to understand existing machine-learning systems, learn new tools, and invent novel architectures, with ease."
Professor Barak Pearlmutter, Brain and Computation Laboratory, National University of Ireland Maynooth, Ireland.
"This text provides an engaging introduction to the mathematics underlying neural networks. It is meant to be read from start to finish, as it carefully builds up, chapter by chapter, the essentials of neural network theory. After first describing classic linear networks and nonlinear multilayer perceptrons, Stone gradually introduces a comprehensive range of cutting edge technologies in use today. Written in an accessible and insightful manner, this book is a pleasure to read, and I will certainly be recommending it to my students."
Dr Stephen Eglen, Department of Applied Mathematics and Theoretical Physics (DAMTP), Cambridge Computational Biology Institute (CCBI), Cambridge University, UK.
"authoritative, funny, and concise"Steven Strogatz, Professor of Applied Mathematics, Cornell University.The brain has always had a fundamental advantage over conventional computers: it can learn. However, a new generation of artificial intelligence algorithms, in the form of deep neural networks, is rapidly eliminating that advantage. Deep neural networks rely on adaptive algorithms to master a wide variety of tasks, including cancer diagnosis, object recognition, speech recognition, robotic control, chess, poker, backgammon and Go, at super-human levels of performance. In this richly illustrated book, key neural network learning algorithms are explained informally first, followed by detailed mathematical analyses. Topics include both historically important neural networks (perceptrons, Hopfield nets, Boltzmann machines and backpropagation networks), and modern deep neural networks (variational autoencoders, convolutional networks, generative adversarial networks, and reinforcement learning using SARSA and Q-learning). Online computer programs, collated from open source repositories, give hands-on experience of neural networks, and PowerPoint slides provide support for teaching. Written in an informal style, with a comprehensive glossary, tutorial appendices (e.g. Bayes' theorem, maximum likelihood estimation), and a list of further readings, this is an ideal introduction to the algorithmic engines of modern artificial intelligence.Dr James V Stone is an Honorary Reader in Vision and Computational Neuroscience at the University of Sheffield, England.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,95 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 0,72 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
Paperback. Condición: Fine. Nº de ref. del artículo: GOR014310296
Cantidad disponible: 1 disponibles
Librería: medimops, Berlin, Alemania
Condición: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Nº de ref. del artículo: M00956372813-V
Cantidad disponible: 1 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9780956372819
Cantidad disponible: Más de 20 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. del artículo: L0-9780956372819
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: LU-9780956372819
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780956372819_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9780956372819
Cantidad disponible: Más de 20 disponibles
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
Condición: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Nº de ref. del artículo: 00089682972
Cantidad disponible: 1 disponibles
Librería: ChouetteCoop, Kervignac, Francia
Condición: Used: Good. Occasion - Bon Etat - Artificial intelligence engines : A tutorial introduction to the mathematics of deep learning (2019) - Grand Format. Nº de ref. del artículo: 3637417
Cantidad disponible: 1 disponibles
Librería: BargainBookStores, Grand Rapids, MI, Estados Unidos de America
Paperback or Softback. Condición: New. Artificial Intelligence Engines: A Tutorial Introduction to the Mathematics of Deep Learning 0.65. Book. Nº de ref. del artículo: BBS-9780956372819
Cantidad disponible: 5 disponibles