This book is based on the author’s Ph.D. dissertation[56]. The the sis research was conducted while the author was a graduate student in the Department of Computer Science at Rutgers University. The book was pre pared at the University of Massachusetts at Amherst where the author is currently an Assistant Professor in the Department of Computer and Infor mation Science. Programs that learn concepts from examples are guided not only by the examples (and counterexamples) that they observe, but also by bias that determines which concept is to be considered as following best from the ob servations. Selection of a concept represents an inductive leap because the concept then indicates the classification of instances that have not yet been observed by the learning program. Learning programs that make undesir able inductive leaps do so due to undesirable bias. The research problem addressed here is to show how a learning program can learn a desirable inductive bias.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book is based on the author's Ph.D. dissertation[56]. The the sis research was conducted while the author was a graduate student in the Department of Computer Science at Rutgers University. The book was pre pared at the University of Massachusetts at Amherst where the author is currently an Assistant Professor in the Department of Computer and Infor mation Science. Programs that learn concepts from examples are guided not only by the examples (and counterexamples) that they observe, but also by bias that determines which concept is to be considered as following best from the ob servations. Selection of a concept represents an inductive leap because the concept then indicates the classification of instances that have not yet been observed by the learning program. Learning programs that make undesir able inductive leaps do so due to undesirable bias. The research problem addressed here is to show how a learning program can learn a desirable inductive bias.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 6,00 gastos de envío desde Francia a España
Destinos, gastos y plazos de envíoEUR 26,91 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Ammareal, Morangis, Francia
Hardcover. Condición: Très bon. Ancien livre de bibliothèque. Légères traces d'usure sur la couverture. Couverture différente. Edition 1986. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Former library book. Slight signs of wear on the cover. Different cover. Edition 1986. Ammareal gives back up to 15% of this item's net price to charity organizations. Nº de ref. del artículo: E-598-140
Cantidad disponible: 1 disponibles
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
Condición: Very Good. 1986th Edition. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. Nº de ref. del artículo: 53532517-6
Cantidad disponible: 1 disponibles
Librería: GoldBooks, Denver, CO, Estados Unidos de America
Hardcover. Condición: new. New Copy. Customer Service Guaranteed. Nº de ref. del artículo: 25Q75_31_0898382238
Cantidad disponible: 1 disponibles
Librería: Michael Knight, Bookseller, Forest Grove, OR, Estados Unidos de America
hardcover. Condición: Very Good. Hardcover issued without dust-jacket. Clean and solid. Ships from a smoke-free home. Nº de ref. del artículo: mon0000013502
Cantidad disponible: 1 disponibles
Librería: GoldBooks, Denver, CO, Estados Unidos de America
Hardcover. Condición: new. New Copy. Customer Service Guaranteed. Nº de ref. del artículo: 77P47_42_0898382238
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Nº de ref. del artículo: 5982389
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780898382235_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 2073551-n
Cantidad disponible: 15 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is based on the author's Ph.D. dissertation. The the sis research was conducted while the author was a graduate student in the Department of Computer Science at Rutgers University. The book was pre pared at the University of Massachusetts at Amherst where the author is currently an Assistant Professor in the Department of Computer and Infor mation Science. Programs that learn concepts from examples are guided not only by the examples (and counterexamples) that they observe, but also by bias that determines which concept is to be considered as following best from the ob servations. Selection of a concept represents an inductive leap because the concept then indicates the classification of instances that have not yet been observed by the learning program. Learning programs that make undesir able inductive leaps do so due to undesirable bias. The research problem addressed here is to show how a learning program can learn a desirable inductive bias. Nº de ref. del artículo: 9780898382235
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 2073551
Cantidad disponible: 15 disponibles