This is an introductory course on the methods of computing asymptotics of probabilities of rare events: the theory of large deviations. The book combines large deviation theory with basic statistical mechanics, namely Gibbs measures with their variational characterization and the phase transition of the Ising model, in a text intended for a one semester or quarter course.
The book begins with a straightforward approach to the key ideas and results of large deviation theory in the context of independent identically distributed random variables. This includes Cramer's theorem, relative entropy, Sanov's theorem, process level large deviations, convex duality, and change of measure arguments.
Dependence is introduced through the interactions potentials of equilibrium statistical mechanics. The phase transition of the Ising model is proved in two different ways: first in the classical way with the Peierls argument, Dobrushin's uniqueness condition, and correlation inequalities and then a second time through the percolation approach.
Beyond the large deviations of independent variables and Gibbs measures, later parts of the book treat large deviations of Markov chains, the Gartner-Ellis theorem, and a large deviation theorem of Baxter and Jain that is then applied to a nonstationary process and a random walk in a dynamical random environment.
The book has been used with students from mathematics, statistics, engineering, and the sciences and has been written for a broad audience with advanced technical training. Appendixes review basic material from analysis and probability theory and also prove some of the technical results used in the text.
"Sinopsis" puede pertenecer a otra edición de este libro.
Firas Rassoul-Agha, University of Utah, Salt Lake City, UT, USA.
Timo Seppalainen, University of Wisconsin-Madison, WI, USA.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 18,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 2,00 gastos de envío desde Irlanda a España
Destinos, gastos y plazos de envíoLibrería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Series: Graduate Studies in Mathematics. Num Pages: 314 pages. BIC Classification: PBT. Category: (P) Professional & Vocational. Dimension: 263 x 188 x 24. Weight in Grams: 740. . 2015. Hardcover. . . . . Nº de ref. del artículo: V9780821875780
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9780821875780
Cantidad disponible: 6 disponibles
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02509 9780821875780 Sprache: Englisch Gewicht in Gramm: 1150. Nº de ref. del artículo: 2488374
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Presents an introductory course on the methods of computing asymptotics of probabilities of rare events: the theory of large deviations. The book combines large deviation theory with basic statistical mechanics, namely Gibbs measures with their variational . Nº de ref. del artículo: 604045408
Cantidad disponible: 5 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 318 pages. 10.00x7.25x1.00 inches. In Stock. Nº de ref. del artículo: __0821875787
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 23523049-n
Cantidad disponible: 6 disponibles
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
Condición: New. Series: Graduate Studies in Mathematics. Num Pages: 314 pages. BIC Classification: PBT. Category: (P) Professional & Vocational. Dimension: 263 x 188 x 24. Weight in Grams: 740. . 2015. Hardcover. . . . . Books ship from the US and Ireland. Nº de ref. del artículo: V9780821875780
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 769. Nº de ref. del artículo: B9780821875780
Cantidad disponible: 7 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 23523049-n
Cantidad disponible: 7 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Hardback. Condición: New. This is an introductory course on the methods of computing asymptotics of probabilities of rare events: the theory of large deviations. The book combines large deviation theory with basic statistical mechanics, namely Gibbs measures with their variational characterization and the phase transition of the Ising model, in a text intended for a one semester or quarter course.The book begins with a straightforward approach to the key ideas and results of large deviation theory in the context of independent identically distributed random variables. This includes Cramer's theorem, relative entropy, Sanov's theorem, process level large deviations, convex duality, and change of measure arguments.Dependence is introduced through the interactions potentials of equilibrium statistical mechanics. The phase transition of the Ising model is proved in two different ways: first in the classical way with the Peierls argument, Dobrushin's uniqueness condition, and correlation inequalities and then a second time through the percolation approach.Beyond the large deviations of independent variables and Gibbs measures, later parts of the book treat large deviations of Markov chains, the Gartner-Ellis theorem, and a large deviation theorem of Baxter and Jain that is then applied to a nonstationary process and a random walk in a dynamical random environment.The book has been used with students from mathematics, statistics, engineering, and the sciences and has been written for a broad audience with advanced technical training. Appendixes review basic material from analysis and probability theory and also prove some of the technical results used in the text. Nº de ref. del artículo: LU-9780821875780
Cantidad disponible: 3 disponibles