Ricci Flow and the Sphere Theorem (Graduate Studies in Mathematics)

4 valoración promedio
( 3 valoraciones por Goodreads )
 
9780821849385: Ricci Flow and the Sphere Theorem (Graduate Studies in Mathematics)

In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman's solution of the Poincaré conjecture. Furthermore, various convergence theorems have been established. This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold, whose sectional curvatures all lie in the interval (1,4], is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen. This text originated from graduate courses given at ETH Zürich and Stanford University, and it is directed at graduate students and researchers. The reader is assumed to be familiar with basic Riemannian geometry, but no previous knowledge of Ricci flow is required.

"Sinopsis" puede pertenecer a otra edición de este libro.

Review:

This book is a great self-contained presentation of one of the most important and exciting developments in differential geometry. It is highly recommended for both researchers and students interested in differential geometry, topology and Ricci flow. As the main technical tool used in the book is the maximum principle, familiar to any undergraduate, this book would make a fine reading course for advanced undergraduates or postgraduates and, in particular, is an excellent introduction to some of the analysis required to study Ricci flow. --Huy The Nyugen, Bulletin of the LMS

This is an excellent self-contained account of exciting new developments in mathematics suitable for both researchers and students interested in differential geometry and topology and in some of the analytic techniques used in Ricci flow. I very strongly recommend it. --Jahresbericht Der Deutschen Mathematiker - Vereinigung

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

Simon Brendle
Editorial: American Mathematical Society (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: > 20
Librería
Sequitur Books
(Boonsboro, MD, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2010. Hardcover. Estado de conservación: New. Brand new. We distribute directly for the publisher. In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman's solution of the Poincaré conjecture. Furthermore, various convergence theorems have been established.This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold, whose sectional curvatures all lie in the interval (1,4], is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen.This text originated from graduate courses given at ETH Zürich and Stanford University, and it is directed at graduate students and researchers. The reader is assumed to be familiar with basic Riemannian geometry, but no previous knowledge of Ricci flow is required. Nº de ref. de la librería 1007130037

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 34,84
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,43
A Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Simon Brendle
Editorial: American Mathematical Society, United States (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society, United States, 2010. Hardback. Estado de conservación: New. Language: English . Brand New Book. In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman s solution of the Poincare conjecture. Furthermore, various convergence theorems have been established. This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold whose sectional curvatures all lie in the interval (1,4] is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen. This text originated from graduate courses given at ETH Zurich and Stanford University, and is directed at graduate students and researchers.The reader is assumed to be familiar with basic Riemannian geometry, but no previous knowledge of Ricci flow is required. Nº de ref. de la librería AAN9780821849385

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 48,07
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Simon Brendle
Editorial: American Mathematical Society, United States (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society, United States, 2010. Hardback. Estado de conservación: New. Language: English . Brand New Book. In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman s solution of the Poincare conjecture. Furthermore, various convergence theorems have been established. This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold whose sectional curvatures all lie in the interval (1,4] is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen. This text originated from graduate courses given at ETH Zurich and Stanford University, and is directed at graduate students and researchers.The reader is assumed to be familiar with basic Riemannian geometry, but no previous knowledge of Ricci flow is required. Nº de ref. de la librería AAN9780821849385

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 48,34
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Simon Brendle
Editorial: American Mathematical Society
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 2
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society. Hardback. Estado de conservación: new. BRAND NEW, Ricci Flow and the Sphere Theorem, Simon Brendle, In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman's solution of the Poincare conjecture. Furthermore, various convergence theorems have been established. This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold whose sectional curvatures all lie in the interval (1,4] is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen. This text originated from graduate courses given at ETH Zurich and Stanford University, and is directed at graduate students and researchers. The reader is assumed to be familiar with basic Riemannian geometry, but no previous knowledge of Ricci flow is required. Nº de ref. de la librería B9780821849385

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 44,58
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 7,74
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Simon Brendle
Editorial: American Mathematical Society (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 1
Librería
Ergodebooks
(RICHMOND, TX, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2010. Hardcover. Estado de conservación: New. Nº de ref. de la librería DADAX0821849387

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 49,73
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,42
A Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Simon Brendle
Editorial: American Mathematical Society (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 1
Librería
Irish Booksellers
(Rumford, ME, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2010. Hardcover. Estado de conservación: New. book. Nº de ref. de la librería 0821849387

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 55,63
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Brendle, Simon
Editorial: Amer Mathematical Society (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 2
Librería
Revaluation Books
(Exeter, Reino Unido)
Valoración
[?]

Descripción Amer Mathematical Society, 2010. Hardcover. Estado de conservación: Brand New. 176 pages. 10.00x7.00x0.50 inches. In Stock. Nº de ref. de la librería __0821849387

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 61,74
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,69
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Simon Brendle
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Cantidad: 2
Librería
BWB
(Valley Stream, NY, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Depending on your location, this item may ship from the US or UK. Nº de ref. de la librería 97808218493850000000

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 70,74
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

9.

Simon Brendle
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Cantidad: 1
Librería
Castle Rock
(Pittsford, NY, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: Brand New. Book Condition: Brand New. Nº de ref. de la librería 97808218493851.0

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 73,49
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,42
A Estados Unidos de America
Destinos, gastos y plazos de envío

10.

Simon Brendle
Editorial: American Mathematical Society (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 1
Librería
Ergodebooks
(RICHMOND, TX, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2010. Hardcover. Estado de conservación: New. Nº de ref. de la librería SONG0821849387

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 77,62
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,42
A Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda