Ricci Flow and the Sphere Theorem (Graduate Studies in Mathematics)

4 valoración promedio
( 3 valoraciones por GoodReads )
 
9780821849385: Ricci Flow and the Sphere Theorem (Graduate Studies in Mathematics)
Reseña del editor:

In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman's solution of the Poincare conjecture. Furthermore, various convergence theorems have been established. This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold whose sectional curvatures all lie in the interval (1,4] is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen. This text originated from graduate courses given at ETH Zurich and Stanford University, and is directed at graduate students and researchers. The reader is assumed to be familiar with basic Riemannian geometry, but no previous knowledge of Ricci flow is required.

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

Simon Brendle
Editorial: American Mathematical Society (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: > 20
Librería
Sequitur Books
(Boonsboro, MD, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2010. Hardcover. Estado de conservación: New. Brand new. We distribute directly for the publisher. In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman's solution of the Poincaré conjecture. Furthermore, various convergence theorems have been established.This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold, whose sectional curvatures all lie in the interval (1,4], is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen.This text originated from graduate courses given at ETH Zürich and Stanford University, and it is directed at graduate students and researchers. The reader is assumed to be familiar with basic Riemannian geometry, but no previous knowledge of Ricci flow is required. Nº de ref. de la librería 1007130037

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 37,46
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,69
A Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Simon Brendle
Editorial: American Mathematical Society, United States (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society, United States, 2010. Hardback. Estado de conservación: New. 259 x 173 mm. Language: English . Brand New Book. In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman s solution of the Poincare conjecture. Furthermore, various convergence theorems have been established. This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold whose sectional curvatures all lie in the interval (1,4] is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen. This text originated from graduate courses given at ETH Zurich and Stanford University, and is directed at graduate students and researchers. The reader is assumed to be familiar with basic Riemannian geometry, but no previous knowledge of Ricci flow is required. Nº de ref. de la librería AAS9780821849385

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 48,55
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Simon Brendle
Editorial: American Mathematical Society, United States (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society, United States, 2010. Hardback. Estado de conservación: New. 259 x 173 mm. Language: English . Brand New Book. In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman s solution of the Poincare conjecture. Furthermore, various convergence theorems have been established. This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold whose sectional curvatures all lie in the interval (1,4] is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen. This text originated from graduate courses given at ETH Zurich and Stanford University, and is directed at graduate students and researchers. The reader is assumed to be familiar with basic Riemannian geometry, but no previous knowledge of Ricci flow is required. Nº de ref. de la librería AAS9780821849385

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 50,80
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Brendle, Simon
Editorial: American Mathematical Society
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 1
Librería
Movie Mars
(Indian Trail, NC, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society. Hardcover. Estado de conservación: New. 0821849387 Brand New Book. Ships from the United States. 30 Day Satisfaction Guarantee!. Nº de ref. de la librería 13423253

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 47,41
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,68
A Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Brendle, Simon
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Cantidad: 3
Librería
BWB
(Valley Stream, NY, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Depending on your location, this item may ship from the US or UK. Nº de ref. de la librería 97808218493850000000

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 51,24
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Simon Brendle
Editorial: American Mathematical Society
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 4
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society. Hardback. Estado de conservación: new. BRAND NEW, Ricci Flow and the Sphere Theorem, Simon Brendle, In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman's solution of the Poincare conjecture. Furthermore, various convergence theorems have been established. This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold whose sectional curvatures all lie in the interval (1,4] is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen. This text originated from graduate courses given at ETH Zurich and Stanford University, and is directed at graduate students and researchers. The reader is assumed to be familiar with basic Riemannian geometry, but no previous knowledge of Ricci flow is required. Nº de ref. de la librería B9780821849385

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 47,55
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,85
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Brendle, Simon
Editorial: Amer Mathematical Society (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 1
Librería
Revaluation Books
(Exeter, Reino Unido)
Valoración
[?]

Descripción Amer Mathematical Society, 2010. Hardcover. Estado de conservación: Brand New. 176 pages. 10.00x7.00x0.50 inches. In Stock. Nº de ref. de la librería z-0821849387

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 49,08
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,92
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Simon Brendle
Editorial: American Mathematical Society (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 1
Librería
Irish Booksellers
(Rumford, ME, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2010. Hardcover. Estado de conservación: New. book. Nº de ref. de la librería 0821849387

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 59,81
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

9.

Brendle, Simon
Editorial: American Mathematical Society (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 1
Librería
English-Book-Service Mannheim
(Mannheim, Alemania)
Valoración
[?]

Descripción American Mathematical Society, 2010. Estado de conservación: New. Nº de ref. de la librería TH9780821849385

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 64,37
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

10.

Simon Brendle
Editorial: American Mathematical Society (2010)
ISBN 10: 0821849387 ISBN 13: 9780821849385
Nuevos Tapa dura Cantidad: 3
Librería
Murray Media
(North Miami Beach, FL, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2010. Hardcover. Estado de conservación: New. Nº de ref. de la librería P110821849387

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 77,46
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 2,76
A Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda