Extensions of the Stability Theorem of the Minkowski Space in General Relativity 2009 (AMS/IP Studies in Advanced Mathematics)

0 valoración promedio
( 0 valoraciones por GoodReads )
 
9780821848234: Extensions of the Stability Theorem of the Minkowski Space in General Relativity 2009 (AMS/IP Studies in Advanced Mathematics)
From the Publisher:

This book consists of two independent works: Part I is 'Solutions of the Einstein Vacuum Equations', by Lydia Bieri. Part II is 'Solutions of the Einstein-Maxwell Equations', by Nina Zipser. A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field.

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

Bieri, Lydia; Zipser, Nina
Editorial: American Mathematical Society, United States (2009)
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society, United States, 2009. Hardback. Estado de conservación: New. 262 x 175 mm. Language: English . Brand New Book. This book consists of two independent works: Part I is Solutions of the Einstein Vacuum Equations , by Lydia Bieri. Part II is Solutions of the Einstein-Maxwell Equations , by Nina Zipser. A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field. Nº de ref. de la librería AAN9780821848234

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 125,01
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a España
Destinos, gastos y plazos de envío

2.

Bieri, Lydia; Zipser, Nina
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Cantidad: 2
Librería
BWB
(Valley Stream, NY, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Depending on your location, this item may ship from the US or UK. Nº de ref. de la librería 97808218482340000000

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 128,23
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

3.

Bieri, Lydia; Zipser, Nina
Editorial: American Mathematical Society, United States (2009)
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society, United States, 2009. Hardback. Estado de conservación: New. 262 x 175 mm. Language: English . Brand New Book. This book consists of two independent works: Part I is Solutions of the Einstein Vacuum Equations , by Lydia Bieri. Part II is Solutions of the Einstein-Maxwell Equations , by Nina Zipser. A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field. Nº de ref. de la librería AAN9780821848234

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 129,55
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a España
Destinos, gastos y plazos de envío

4.

Bieri, Lydia; Zipser, Nina
Editorial: American Mathematical Society
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 2
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society. Hardback. Estado de conservación: new. BRAND NEW, Extensions of the Stability Theorem of the Minkowski Space in General Relativity: 2009, Lydia Bieri, Nina Zipser, This book consists of two independent works: Part I is 'Solutions of the Einstein Vacuum Equations', by Lydia Bieri. Part II is 'Solutions of the Einstein-Maxwell Equations', by Nina Zipser. A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field. Nº de ref. de la librería B9780821848234

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 126,28
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 8,04
De Reino Unido a España
Destinos, gastos y plazos de envío

5.

Bieri, Lydia; Zipser, Nina
Editorial: American Mathematical Society (2009)
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: > 20
Librería
Sequitur Books
(Boonsboro, MD, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2009. Hardcover. Estado de conservación: New. Brand new. We distribute directly for the publisher. A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp.In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field. Nº de ref. de la librería 1003170079

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 110,77
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 29,27
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

6.

Bieri, Lydia; Zipser, Nina
Editorial: American Mathematical Society (2009)
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 1
Librería
Ergodebooks
(RICHMOND, TX, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2009. Hardcover. Estado de conservación: New. Nº de ref. de la librería DADAX0821848232

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 157,01
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 13,09
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

7.

Bieri, Lydia; Zipser, Nina
Editorial: American Mathematical Society (2009)
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 2
Librería
Revaluation Books
(Exeter, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society, 2009. Hardcover. Estado de conservación: Brand New. 491 pages. 10.00x7.25x1.25 inches. In Stock. Nº de ref. de la librería __0821848232

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 171,28
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 17,36
De Reino Unido a España
Destinos, gastos y plazos de envío

8.

Bieri, Lydia; Zipser, Nina
Editorial: American Mathematical Society (2009)
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 1
Librería
Irish Booksellers
(Rumford, ME, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2009. Hardcover. Estado de conservación: New. book. Nº de ref. de la librería 0821848232

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 166,20
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 35,54
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

9.

Bieri, Lydia; Zipser, Nina
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 1
Librería
AussieBookSeller
(SILVERWATER, NSW, Australia)
Valoración
[?]

Descripción 2009. Hardcover. Estado de conservación: New. Hardcover. Intends to solve the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes the asymptotic behavior. This book al.Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. 491 pages. 1.080. Nº de ref. de la librería 9780821848234

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 200,49
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 26,19
De Australia a España
Destinos, gastos y plazos de envío

10.

Bieri, Lydia; Zipser, Nina
Editorial: American Mathematical Society (2009)
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 1
Librería
Media Mall
(Fyshwick, ACT, Australia)
Valoración
[?]

Descripción American Mathematical Society, 2009. Hardcover. Estado de conservación: New. 0 x 0 cm. Our orders are sent from our warehouse locally or directly from our international distributors to allow us to offer you the best possible price and delivery time. Book. Nº de ref. de la librería MM-60716879

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 260,37
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 16,74
De Australia a España
Destinos, gastos y plazos de envío