Extensions of the Stability Theorem of the Minkowski Space in General Relativity 2009 (AMS/IP Studies in Advanced Mathematics)

0 valoración promedio
( 0 valoraciones por Goodreads )
 
9780821848234: Extensions of the Stability Theorem of the Minkowski Space in General Relativity 2009 (AMS/IP Studies in Advanced Mathematics)
Reseña del editor:

This book consists of two independent works: Part I is 'Solutions of the Einstein Vacuum Equations', by Lydia Bieri. Part II is 'Solutions of the Einstein-Maxwell Equations', by Nina Zipser. A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field.

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

Lydia Bieri and Nina Zipser
Editorial: American Mathematical Society (2009)
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 1
Librería
Ergodebooks
(RICHMOND, TX, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2009. Hardcover. Estado de conservación: New. Nº de ref. de la librería DADAX0821848232

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 96,00
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,55
A Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Lydia Bieri and Nina Zipser
Editorial: American Mathematical Society (2009)
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 1
Librería
Irish Booksellers
(Rumford, ME, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2009. Hardcover. Estado de conservación: New. book. Nº de ref. de la librería 0821848232

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 102,17
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Lydia Bieri and Nina Zipser
Editorial: American Mathematical Society (2009)
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: > 20
Librería
Sequitur Books
(Boonsboro, MD, Estados Unidos de America)
Valoración
[?]

Descripción American Mathematical Society, 2009. Hardcover. Estado de conservación: New. Brand new. We distribute directly for the publisher. A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp.In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field. Nº de ref. de la librería 1003170079

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 105,47
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,56
A Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Lydia Bieri; Nina Zipser
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Cantidad: 2
Librería
BWB
(Valley Stream, NY, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Depending on your location, this item may ship from the US or UK. Nº de ref. de la librería 97808218482340000000

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 118,94
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Lydia Bieri, Nina Zipser
Editorial: American Mathematical Society, United States (2009)
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society, United States, 2009. Hardback. Estado de conservación: New. 262 x 175 mm. Language: English . Brand New Book. This book consists of two independent works: Part I is Solutions of the Einstein Vacuum Equations , by Lydia Bieri. Part II is Solutions of the Einstein-Maxwell Equations , by Nina Zipser. A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field. Nº de ref. de la librería AAN9780821848234

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 121,22
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Lydia Bieri, Nina Zipser
Editorial: American Mathematical Society, United States (2009)
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society, United States, 2009. Hardback. Estado de conservación: New. 262 x 175 mm. Language: English . Brand New Book. This book consists of two independent works: Part I is Solutions of the Einstein Vacuum Equations , by Lydia Bieri. Part II is Solutions of the Einstein-Maxwell Equations , by Nina Zipser. A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp.In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field. Nº de ref. de la librería AAN9780821848234

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 121,28
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Lydia Bieri, Nina Zipser
Editorial: American Mathematical Society
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 2
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society. Hardback. Estado de conservación: new. BRAND NEW, Extensions of the Stability Theorem of the Minkowski Space in General Relativity: 2009, Lydia Bieri, Nina Zipser, This book consists of two independent works: Part I is 'Solutions of the Einstein Vacuum Equations', by Lydia Bieri. Part II is 'Solutions of the Einstein-Maxwell Equations', by Nina Zipser. A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field. Nº de ref. de la librería B9780821848234

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 131,00
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,86
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Bieri, Lydia/ Zipser, Nina
Editorial: American Mathematical Society (2009)
ISBN 10: 0821848232 ISBN 13: 9780821848234
Nuevos Tapa dura Cantidad: 2
Librería
Revaluation Books
(Exeter, Reino Unido)
Valoración
[?]

Descripción American Mathematical Society, 2009. Hardcover. Estado de conservación: Brand New. 491 pages. 10.00x7.25x1.25 inches. In Stock. Nº de ref. de la librería __0821848232

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 164,49
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,93
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío