This is the first comprehensive introduction to the theory of mass transportation with its many - and sometimes unexpected - applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. In 1781, Gaspard Monge defined the problem of 'optimal transportation' (or the transferring of mass with the least possible amount of work), with applications to engineering in mind.In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind. Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology. Originating from a graduate course, the present volume is intended for graduate students and researchers, covering both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.
"Sinopsis" puede pertenecer a otra edición de este libro.
This is the first comprehensive introduction to the theory of mass transportation with its many--and sometimes unexpected--applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. In 1781, Gaspard Monge defined the problem of ``optimal transportation'' (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind. Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology. Originating from a graduate course, the present volume is intended for graduate students and researchers, covering both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.
"Sobre este título" puede pertenecer a otra edición de este libro.
GRATIS gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,66 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: BooksRun, Philadelphia, PA, Estados Unidos de America
Hardcover. Condición: Very Good. UK ed. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Nº de ref. del artículo: 082183312X-8-1
Cantidad disponible: 1 disponibles
Librería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
Condición: Very Good. *Price HAS BEEN REDUCED by 10% until Monday, Sept. 15 (sale item)* 370 pp., Hardcover, very good. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Nº de ref. del artículo: ZB1332627
Cantidad disponible: 1 disponibles
Librería: Toscana Books, AUSTIN, TX, Estados Unidos de America
Hardcover. Condición: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Nº de ref. del artículo: Scanned082183312X
Cantidad disponible: 1 disponibles