Artículos relacionados a Geometry and Spectra of Compact Riemann Surfaces: 106...

Geometry and Spectra of Compact Riemann Surfaces: 106 (Progress in Mathematics) - Tapa dura

 
9780817634063: Geometry and Spectra of Compact Riemann Surfaces: 106 (Progress in Mathematics)

Críticas

"Anyone familiar with the author's hands-on approach to Riemann surfaces will be gratified by both the breadth and the depth of the topics considered here. The exposition is also extremely clear and thorough. Anyone not familiar with the author's approach is in for a real treat." a "Mathematical Reviews

Reseña del editor

This monograph is a self-contained introduction to the geometry of Riemann Surfaces of constant curvature -1 and their length and eigenvalue spectra. It focuses on two subjects: the geometric theory of compact Riemann surfaces of genus greater than one, and the relationship of the Laplace operator with the geometry of such surfaces. The first part of the book is written in textbook form at the graduate level, with few requisites other than background in either differential geometry or complex Riemann surface theory. It begins with an account of the Fenchel-Nielsen approach to Teichmüller Space. Hyperbolic trigonometry and Bers’ partition theorem (with a new proof which yields explicit bounds) are shown to be simple but powerful tools in this context. The second part of the book is a self-contained introduction to the spectrum of the Laplacian based on head equations. The approach chosen yields a simple proof that compact Riemann surfaces have the same eigenvalues if and only if they have the same length spectrum. Later chapters deal with recent developments on isospectrality, Sunada’s construction, a simplified proof of Wolpert’s theorem, and an estimate fo the number of pairwise isospectral non-isometric examples which depends only on genus. Research workers and graduate students interested in compact Riemann surfaces will find here a number of useful tools and insights to apply to their investigations.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialBirkhauser Boston Inc
  • Año de publicación1992
  • ISBN 10 0817634061
  • ISBN 13 9780817634063
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de páginas476

Comprar usado

Condición: Aceptable
Original boards, illustrated with...
Ver este artículo

EUR 9,95 gastos de envío desde Holanda a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

Resultados de la búsqueda para Geometry and Spectra of Compact Riemann Surfaces: 106...

Imagen del vendedor

Buser, Peter
Publicado por Boston/Basel/Berlin : Birkhäuser, 1992
ISBN 10: 0817634061 ISBN 13: 9780817634063
Antiguo o usado Tapa dura

Librería: Klondyke, Almere, Holanda

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. Original boards, illustrated with numerous equations and diagrams, 8vo. Progress in Mathematics, 106; Name in pen on title page. Nº de ref. del artículo: 342009-ZA22

Contactar al vendedor

Comprar usado

EUR 110,00
Convertir moneda
Gastos de envío: EUR 9,95
De Holanda a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito