Whereas standard regression models force economic relationships or behavior to be fixed through time, stochastic parameter regression models allow relationships to vary slowly--without need for specification of the causes of that variation. The authors thoroughly examine the usefulness of the Kalman filter and state-space modeling in work with the stochastic parameter regression model.
"Sinopsis" puede pertenecer a otra edición de este libro.
Paul Newbold was born in England in 1945. In 1966 he obtained a BSc in Economics at the London School of Economics, before continuing to study for a PhD in Statistics at the University of Wisconsin. He worked under the supervision of George Box, and was awarded his PhD in 1970. His first academic posts were at the University of Nottingham, where he spent time in both the Department of Economics and the Department of Mathematics. From 1979-1994 he was Professor at the University of Illinois, before returning to the University of Nottingham in 1994 as Professor of Econometrics. Paul Newbold has had a large influence on the discipline of time series econometrics, particularly in the areas of non-stationary time series, forecasting, and univariate time series analysis. He has published extensively in journals such as Journal of Econometrics, Journal of Business and Economic Statistics, Journal of the American Statistical Association, Biometrika, and Econometric Theory. He retired in 2006 and is now Emeritus Professor of Econometrics.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 1,62 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 5,18 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America
Paperback. Condición: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 0.25. Nº de ref. del artículo: G0803924259I3N00
Cantidad disponible: 1 disponibles
Librería: NEPO UG, Rüsselsheim am Main, Alemania
Condición: Gut. Auflage: 1st Edition. 84 Seiten Sprache: Englisch Gewicht in Gramm: 95 21,0 x 13,6 x 0,5 cm, Taschenbuch. Nº de ref. del artículo: 365518
Cantidad disponible: 1 disponibles
Librería: NEPO UG, Rüsselsheim am Main, Alemania
Condición: Gut. 84 Seiten ex library book - Sprache: Englisch Gewicht in Gramm: 95 21,0 x 13,6 x 0,5 cm, Taschenbuch. Nº de ref. del artículo: 344553
Cantidad disponible: 1 disponibles
Librería: Dorley House Books, Inc., Hagerstown, MD, Estados Unidos de America
Paperback. Condición: Near Fine. graphs, Charts, Etc Ilustrador. 1st. 1st printing; 80 clean, unmarked pages. Nº de ref. del artículo: 068752
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780803924253_new
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com UK, London, Reino Unido
Paperback. Condición: New. 1st. Whereas standard regression models force economic relationships or behavior to be fixed through time, stochastic parameter regression models allow relationships to vary slowly--without need for specification of the causes of that variation. The authors thoroughly examine the usefulness of the Kalman filter and state-space modeling in work with the stochastic parameter regression model. Nº de ref. del artículo: LU-9780803924253
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 148. Nº de ref. del artículo: C9780803924253
Cantidad disponible: Más de 20 disponibles
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
Paperback. Condición: New. 1st. Whereas standard regression models force economic relationships or behavior to be fixed through time, stochastic parameter regression models allow relationships to vary slowly--without need for specification of the causes of that variation. The authors thoroughly examine the usefulness of the Kalman filter and state-space modeling in work with the stochastic parameter regression model. Nº de ref. del artículo: LU-9780803924253
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 2323269-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 2323269
Cantidad disponible: Más de 20 disponibles