Parallel Algorithms and Architectures for DSP Applications: 149 (The Springer International Series in Engineering and Computer Science) - Tapa dura

 
9780792392095: Parallel Algorithms and Architectures for DSP Applications: 149 (The Springer International Series in Engineering and Computer Science)

Sinopsis

Over the past few years, the demand for high speed Digital Signal Proces­ sing (DSP) has increased dramatically. New applications in real-time image processing, satellite communications, radar signal processing, pattern recogni­ tion, and real-time signal detection and estimation require major improvements at several levels; algorithmic, architectural, and implementation. These perfor­ mance requirements can be achieved by employing parallel processing at all levels. Very Large Scale Integration (VLSI) technology supports and provides a good avenue for parallelism. Parallelism offers efficient sohitions to several problems which can arise in VLSI DSP architectures such as: 1. Intermediate data communication and routing: several DSP algorithms, such as FFT, involve excessive data routing and reordering. Parallelism is an efficient mechanism to minimize the silicon cost and speed up the pro­ cessing time of the intermediate middle stages. 2. Complex DSP applications: the required computation is almost doubled. Parallelism will allow two similar channels processing at the same time. The communication between the two channels has to be minimized. 3. Applicatilm specific systems: this emerging approach should achieve real-time performance in a cost-effective way. 4. Testability and fault tolerance: reliability has become a required feature in most of DSP systems. To achieve such property, the involved time overhead is significant. Parallelism may be the solution to maintain ac­ ceptable speed performance.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Over the past few years, the demand for high speed Digital Signal Proces­ sing (DSP) has increased dramatically. New applications in real-time image processing, satellite communications, radar signal processing, pattern recogni­ tion, and real-time signal detection and estimation require major improvements at several levels; algorithmic, architectural, and implementation. These perfor­ mance requirements can be achieved by employing parallel processing at all levels. Very Large Scale Integration (VLSI) technology supports and provides a good avenue for parallelism. Parallelism offers efficient sohitions to several problems which can arise in VLSI DSP architectures such as: 1. Intermediate data communication and routing: several DSP algorithms, such as FFT, involve excessive data routing and reordering. Parallelism is an efficient mechanism to minimize the silicon cost and speed up the pro­ cessing time of the intermediate middle stages. 2. Complex DSP applications: the required computation is almost doubled. Parallelism will allow two similar channels processing at the same time. The communication between the two channels has to be minimized. 3. Applicatilm specific systems: this emerging approach should achieve real-time performance in a cost-effective way. 4. Testability and fault tolerance: reliability has become a required feature in most of DSP systems. To achieve such property, the involved time overhead is significant. Parallelism may be the solution to maintain ac­ ceptable speed performance.

"Sobre este título" puede pertenecer a otra edición de este libro.

Otras ediciones populares con el mismo título

9781461367864: Parallel Algorithms and Architectures for DSP Applications: 149 (The Springer International Series in Engineering and Computer Science)

Edición Destacada

ISBN 10:  1461367867 ISBN 13:  9781461367864
Editorial: Springer, 2012
Tapa blanda