Introduction to the Theory of Singular Integral Operators with Shift: 289 (Mathematics and Its Applications) - Tapa dura

Litvinchuk, Georgii S.; Kravchenko, V. G.; Kravchenko, Victor G.

 
9780792328643: Introduction to the Theory of Singular Integral Operators with Shift: 289 (Mathematics and Its Applications)

Sinopsis

problem (0. 2) was the same u that of problem (0. 1). Incidentally, later on Mandzhavidze and Khvedclidze (I) and Simonenko (I) achieved a direct reduction of problem (0. 2) to problem (0. 1) with the help of conformal mappings. Apparenlly, the first paper in which SIES were considered was the paper by Vekua (2) published in 1948. Vekua verified that the equation (0. 3) where (1; € C(f), 5 is the operator of ’ingular integration with a Cauchy kernel (Srp)(!) "" (". i)-I fr(T - t)-lrp(T)dT, W is the shift operator (WrpHt) = rp{a(t, in the case 01 = - (13,0, = 0. , could be reduced to problem (0. 2). We note thai, in problem (0. 2), the shift ott) need not be a Carlemao shift, . ei. , it is oot necessary that a . . (t) :::: t for some integer 11 ~ 2, where ai(l) "" o(ok_dt)), 0(1(1) ::::!. For the first time, the condition 0,(1) == 1 appeared in BPAFS theory in connection with the study of the problem (0. 4) by Carle man (2) who, in particular, showed that problem (0. 4) Wall a natural generalization of the problem on the existence of an a. utomorphic function belonging to a certain group of Fucs. Thus, the paper by Vckua (2) is also the fint paper in which a singular integral equation with a non·Carieman 5hifl is on c sidered.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

problem (0. 2) was the same u that of problem (0. 1). Incidentally, later on Mandzhavidze and Khvedclidze (I) and Simonenko (I) achieved a direct reduction of problem (0. 2) to problem (0. 1) with the help of conformal mappings. Apparenlly, the first paper in which SIES were considered was the paper by Vekua (2) published in 1948. Vekua verified that the equation (0. 3) where (1; € C(f), 5 is the operator of 'ingular integration with a Cauchy kernel (Srp)(!) "" (". i)-I fr(T - t)-lrp(T)dT, W is the shift operator (WrpHt) = rp{a(t, in the case 01 = - (13,0, = 0. , could be reduced to problem (0. 2). We note thai, in problem (0. 2), the shift ott) need not be a Carlemao shift, . ei. , it is oot necessary that a . . (t) :::: t for some integer 11 ~ 2, where ai(l) "" o(ok_dt)), 0(1(1) ::::!. For the first time, the condition 0,(1) == 1 appeared in BPAFS theory in connection with the study of the problem (0. 4) by Carle man (2) who, in particular, showed that problem (0. 4) Wall a natural generalization of the problem on the existence of an a. utomorphic function belonging to a certain group of Fucs. Thus, the paper by Vckua (2) is also the fint paper in which a singular integral equation with a non·Carieman 5hifl is on c sidered.

Reseña del editor

This book is devoted to the Fredholm theory of singular integral operators with shift in L p, 1< p This book is of interest to graduate students and mathematicians. The book is self-contained and can be used as a main reference for special course seminars on singular integral operators.

"Sobre este título" puede pertenecer a otra edición de este libro.

Otras ediciones populares con el mismo título

9789401045155: Introduction to the Theory of Singular Integral Operators with Shift: 289 (Mathematics and Its Applications)

Edición Destacada

ISBN 10:  9401045151 ISBN 13:  9789401045155
Editorial: Springer, 2012
Tapa blanda