The use of numerical grid methods to solve the Schrodinger equation has rapidly evolved in the past decade.The early attempts to demonstrate the computational viability of grid methods have been largely superseded by applications to specific problems and deeper research into more sophisticated quadrature schemes. Underpinning this research, of course, is the belief that the generic nature of grid methods can enjoy a symbiotic development with advances in computer technology, harnessing this technology in an effective manner. The contributions to this proceedings demonstrate these points in full: several appli cations displayed creative use and extension of existing grid methodology; other research concentrated on the development of new quadrature schemes or mixed numerical meth ods. The research represented ranges from highly specific spectral simulations of van der Waals complexs to general schemes for reactive scattering. The novelty of grid methods in Density Functional Theory calculations should also be highlighted since it represents an alternative to standard basis set expansion techniques and might offer distinct advantages to the standard techniques. A deliberate attempt was made to present research material with more motivational and background discussion than is typical of research publications. It is hoped that these contributed proceedings will be useful to students and researchers outside the field to have a rapid and complete introduction to many of the exciting uses of grid methodology in atomic and molecular physics. Special thanks are due to the NATO Science Committee for its generous support of the activities of this workshop.
"Sinopsis" puede pertenecer a otra edición de este libro.
The use of numerical grid methods to solve the Schrodinger equation has rapidly evolved in the past decade.The early attempts to demonstrate the computational viability of grid methods have been largely superseded by applications to specific problems and deeper research into more sophisticated quadrature schemes. Underpinning this research, of course, is the belief that the generic nature of grid methods can enjoy a symbiotic development with advances in computer technology, harnessing this technology in an effective manner. The contributions to this proceedings demonstrate these points in full: several appli cations displayed creative use and extension of existing grid methodology; other research concentrated on the development of new quadrature schemes or mixed numerical meth ods. The research represented ranges from highly specific spectral simulations of van der Waals complexs to general schemes for reactive scattering. The novelty of grid methods in Density Functional Theory calculations should also be highlighted since it represents an alternative to standard basis set expansion techniques and might offer distinct advantages to the standard techniques. A deliberate attempt was made to present research material with more motivational and background discussion than is typical of research publications. It is hoped that these contributed proceedings will be useful to students and researchers outside the field to have a rapid and complete introduction to many of the exciting uses of grid methodology in atomic and molecular physics. Special thanks are due to the NATO Science Committee for its generous support of the activities of this workshop.
This book offers a unique perspective on the rapidly growing field of numerical grid methods applied to the solution of the Schrödinger equation. Several articles provide comprehensive reviews of the discrete variable and pseudo-spectral operator representation. The applications include sophisticated refinements of the basic approaches with emphasis on successful parallel implementation. The range of problems considered is broad including reactive scattering, photoexcitation processes, mixed quantum--classical methodology, and density functional electronic structure calculations. The book thus serves as a direct introduction to numerical grid methods and as a guide to future research.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 20,90 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
Condición: Very Good. 248 pp., Hardcover, minor library markings, else text and binding clean and tight. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Nº de ref. del artículo: ZB1119982
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proceedings of the NATO Advanced Research Workshop on `Grid methods in Atomic and Molecular Quantum Calculations , Corte, Corsica, France, September 27-October 3, 1992 The use of numerical grid methods to solve the Schrodinger equation has rapidly evo. Nº de ref. del artículo: 5966873
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The use of numerical grid methods to solve the Schrodinger equation has rapidly evolved in the past decade.The early attempts to demonstrate the computational viability of grid methods have been largely superseded by applications to specific problems and deeper research into more sophisticated quadrature schemes. Underpinning this research, of course, is the belief that the generic nature of grid methods can enjoy a symbiotic development with advances in computer technology, harnessing this technology in an effective manner. The contributions to this proceedings demonstrate these points in full: several appli cations displayed creative use and extension of existing grid methodology; other research concentrated on the development of new quadrature schemes or mixed numerical meth ods. The research represented ranges from highly specific spectral simulations of van der Waals complexs to general schemes for reactive scattering. The novelty of grid methods in Density Functional Theory calculations should also be highlighted since it represents an alternative to standard basis set expansion techniques and might offer distinct advantages to the standard techniques. A deliberate attempt was made to present research material with more motivational and background discussion than is typical of research publications. It is hoped that these contributed proceedings will be useful to students and researchers outside the field to have a rapid and complete introduction to many of the exciting uses of grid methodology in atomic and molecular physics. Special thanks are due to the NATO Science Committee for its generous support of the activities of this workshop. 268 pp. Englisch. Nº de ref. del artículo: 9780792324232
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780792324232_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The use of numerical grid methods to solve the Schrodinger equation has rapidly evolved in the past decade.The early attempts to demonstrate the computational viability of grid methods have been largely superseded by applications to specific problems and deeper research into more sophisticated quadrature schemes. Underpinning this research, of course, is the belief that the generic nature of grid methods can enjoy a symbiotic development with advances in computer technology, harnessing this technology in an effective manner. The contributions to this proceedings demonstrate these points in full: several appli cations displayed creative use and extension of existing grid methodology; other research concentrated on the development of new quadrature schemes or mixed numerical meth ods. The research represented ranges from highly specific spectral simulations of van der Waals complexs to general schemes for reactive scattering. The novelty of grid methods in Density Functional Theory calculations should also be highlighted since it represents an alternative to standard basis set expansion techniques and might offer distinct advantages to the standard techniques. A deliberate attempt was made to present research material with more motivational and background discussion than is typical of research publications. It is hoped that these contributed proceedings will be useful to students and researchers outside the field to have a rapid and complete introduction to many of the exciting uses of grid methodology in atomic and molecular physics. Special thanks are due to the NATO Science Committee for its generous support of the activities of this workshop. Nº de ref. del artículo: 9780792324232
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -The use of numerical grid methods to solve the Schrodinger equation has rapidly evolved in the past decade.The early attempts to demonstrate the computational viability of grid methods have been largely superseded by applications to specific problems and deeper research into more sophisticated quadrature schemes. Underpinning this research, of course, is the belief that the generic nature of grid methods can enjoy a symbiotic development with advances in computer technology, harnessing this technology in an effective manner. The contributions to this proceedings demonstrate these points in full: several appli cations displayed creative use and extension of existing grid methodology; other research concentrated on the development of new quadrature schemes or mixed numerical meth ods. The research represented ranges from highly specific spectral simulations of van der Waals complexs to general schemes for reactive scattering. The novelty of grid methods in Density Functional Theory calculations should also be highlighted since it represents an alternative to standard basis set expansion techniques and might offer distinct advantages to the standard techniques. A deliberate attempt was made to present research material with more motivational and background discussion than is typical of research publications. It is hoped that these contributed proceedings will be useful to students and researchers outside the field to have a rapid and complete introduction to many of the exciting uses of grid methodology in atomic and molecular physics. Special thanks are due to the NATO Science Committee for its generous support of the activities of this workshop.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 268 pp. Englisch. Nº de ref. del artículo: 9780792324232
Cantidad disponible: 2 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2416190181334
Cantidad disponible: Más de 20 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Hardcover. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA75807923242345
Cantidad disponible: 1 disponibles