Written by leading researchers in the field, Machine Learning for Tomographic Imaging presents a unified overview of deep-learning-based tomographic imaging. Key concepts, including classic reconstruction ideas and human vision inspired insights, are introduced as a foundation for a thorough examination of artificial neural networks and deep tomographic reconstruction. An engaging and accessible style makes this book an ideal introduction for those in applied disciplines, as well as those in more theoretical fields who wish to learn about application contexts. Hands-on projects are also suggested, and links to open source software, working datasets, and network models are included.
"Sinopsis" puede pertenecer a otra edición de este libro.
EUR 4,32 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: CW-9780750322171
Cantidad disponible: 15 disponibles
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: CW-9780750322171
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780750322171_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Neuware - Written by leading researchers in the field, Machine Learning for Tomographic Imaging presents a unified overview of deep-learning-based tomographic imaging. Key concepts, including classic reconstruction ideas and human vision inspired insights, are introduced as a foundation for a thorough examination of artificial neural networks and deep tomographic reconstruction. An engaging and accessible style makes this book an ideal introduction for those in applied disciplines, as well as those in more theoretical fields who wish to learn about application contexts. Hands-on projects are also suggested, and links to open source software, working datasets, and network models are included. Nº de ref. del artículo: 9780750322171
Cantidad disponible: 2 disponibles