Artículos relacionados a Mathematical Methods in Elasticity Imaging: 52 (Princeton...

Mathematical Methods in Elasticity Imaging: 52 (Princeton Series in Applied Mathematics) - Tapa dura

 
9780691165318: Mathematical Methods in Elasticity Imaging: 52 (Princeton Series in Applied Mathematics)

Sinopsis

This book is the first to comprehensively explore elasticity imaging and examines recent, important developments in asymptotic imaging, modeling, and analysis of deterministic and stochastic elastic wave propagation phenomena. It derives the best possible functional images for small inclusions and cracks within the context of stability and resolution, and introduces a topological derivative-based imaging framework for detecting elastic inclusions in the time-harmonic regime. For imaging extended elastic inclusions, accurate optimal control methodologies are designed and the effects of uncertainties of the geometric or physical parameters on stability and resolution properties are evaluated. In particular, the book shows how localized damage to a mechanical structure affects its dynamic characteristics, and how measured eigenparameters are linked to elastic inclusion or crack location, orientation, and size. Demonstrating a novel method for identifying, locating, and estimating inclusions and cracks in elastic structures, the book opens possibilities for a mathematical and numerical framework for elasticity imaging of nanoparticles and cellular structures.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Habib Ammari is director of research at the French National Center for Scientific Research and professor of mathematics at the Ecole Normale Superieure. Elie Bretin is a postdoctoral researcher in mathematics at the Ecole Polytechnique. Josselin Garnier is professor of mathematics at Universite Paris VII. Hyeonbae Kang is the Jungseok Chair Professor of Mathematics at Inha University in South Korea. Hyundae Lee is assistant professor of mathematics at Inha University. Abdul Wahab is a postdoctoral researcher in mathematics at Universite Paris VII.

De la contraportada

"This book covers recent mathematical, numerical, and statistical approaches for elasticity imaging of inclusions and cracks. A precise and timely book, it is easy to follow and will interest readers."--Yanyan Li, Rutgers University

"This book is the first to provide readers with a comprehensive overview of mathematical and computational studies of elasticity imaging. It is a useful resource for scientists and engineers in the relevant fields and a solid reference for any newcomers to elasticity imaging."--Gang Bao, Zhejiang University

"This well-organized book explains recent mathematical, numerical, and statistical approaches for multistatic imaging of targets with waves at single or multiple frequencies. It makes an important contribution to the understanding of trade-offs between data size, computational complexity, signal-to-noise ratio, and resolution in multistatic imaging."--Jin Keun Seo, Yonsei University

De la solapa interior

"This book covers recent mathematical, numerical, and statistical approaches for elasticity imaging of inclusions and cracks. A precise and timely book, it is easy to follow and will interest readers."--Yanyan Li, Rutgers University

"This book is the first to provide readers with a comprehensive overview of mathematical and computational studies of elasticity imaging. It is a useful resource for scientists and engineers in the relevant fields and a solid reference for any newcomers to elasticity imaging."--Gang Bao, Zhejiang University

"This well-organized book explains recent mathematical, numerical, and statistical approaches for multistatic imaging of targets with waves at single or multiple frequencies. It makes an important contribution to the understanding of trade-offs between data size, computational complexity, signal-to-noise ratio, and resolution in multistatic imaging."--Jin Keun Seo, Yonsei University

Fragmento. © Reproducción autorizada. Todos los derechos reservados.

Mathematical Methods in Elasticity Imaging

By Habib Ammari, Elie Bretin, Josselin Garnier, Hyeonbae Kang, Hyundae Lee, Abdul Wahab

PRINCETON UNIVERSITY PRESS

Copyright © 2015 Princeton University Press
All rights reserved.
ISBN: 978-0-691-16531-8

Contents

Introduction, 1,
1 Layer Potential Techniques, 4,
2 Elasticity Equations with High Contrast Parameters, 33,
3 Small-Volume Expansions of the Displacement Fields, 48,
4 Boundary Perturbations due to the Presence of Small Cracks, 66,
5 Backpropagation and Multiple Signal Classification Imaging of Small Inclusions, 80,
6 Topological Derivative Based Imaging of Small Inclusions in the Time-Harmonic Regime, 91,
7 Stability of Topological Derivative Based Imaging Functionals, 112,
8 Time-Reversal Imaging of Extended Source Terms, 125,
9 Optimal Control Imaging of Extended Inclusions, 148,
10 Imaging from Internal Data, 160,
11 Vibration Testing, 168,
A Introduction to Random Processes, 201,
B Asymptotics of the Attenuation Operator, 210,
C The Generalized Argument Principle and Rouche's Theorem, 213,
References, 217,
Index, 229,


CHAPTER 1

Layer Potential Techniques


The asymptotic theory for elasticity imaging described in this book relies on layer potential techniques. In this chapter we prepare the way by reviewing a number of basic facts and preliminary results regarding the layer potentials associated with both the static and time-harmonic elasticity systems. The most important results in this chapter are on one hand the decomposition formulas for the solutions to transmission problems in elasticity and characterization of eigenvalues of the elasticity system as characteristic values of layer potentials and on the other hand, the Helmholtz-Kirchhoff identities. As will be shown later, the Helmholtz-Kirchhoff identities play a key role in the analysis of resolution in elastic wave imaging. We also note that when dealing with exterior problems for harmonic elasticity, one should introduce a radiation condition, known as the Sommerfeld radiation condition, in order to select the physical solution to the problem.

This chapter is organized as follows. In Section 1.1 we first review commonly used function spaces. Then we introduce in Section 1.2 equations of linear elasticity and use the Helmholtz decomposition theorem to decompose the displacement field into the sum of an irrotational (curl-free) and a solenoidal (divergence-free) field. Section 1.3 is devoted to the radiation condition for the time-harmonic elastic waves, which is used to select the physical solution to exterior problems. In Section 1.4 we introduce the layer potentials associated with the operators of static and time-harmonic elasticity, study their mapping properties, and prove decomposition formulas for the displacement fields. In Section 1.5 we derive the Helmholtz-Kirchhoff identities, which play a key role in the resolution analysis in Chapters 7 and 8. In Section 1.6 we characterize the eigenvalues of the elasticity operator on a bounded domain with Neumann or Dirichlet boundary conditions as the characteristic values of certain layer potentials which are meromorphic operator-valued functions. We also introduce Neumann and Dirichlet functions and write their spectral decompositions. These results will be used in Chapter 11. Finally, in Section 1.7 we state a generalization of Meyer's theorem concerning the regularity of solutions to the equations of linear elasticity, which will be needed in Chapter 11 in order to establish an asymptotic theory of eigenvalue elastic problems.


1.1 SOBOLEV SPACES

Throughout the book, symbols of scalar quantities are printed in italic type, symbols of vectors are printed in bold italic type, symbols of matrices or 2-tensors are printed in bold type, and symbols of 4-tensors are printed in blackboard bold type.

The following Sobolev spaces are needed for the study of mapping properties of layer potentials for elasticity equations.

Let [partial derivative]i denote [partial derivative]/[partial derivative]xi. We use [nabla] = ([partial derivative]i)di=1 and [partial derivative]2 = ([partial derivative]2ij))di,j=1 to denote the gradient and the Hessian, respectively.

Let Ω be a smooth domain in Rd, with d = 2 or 3. We define the Hilbert space H1(Ω) by

H1(Ω) = {u [member of] L2(Ω) : [nabla]u [member of] L2(Ω)},


where [nabla]u is interpreted as a distribution and L2(Ω) is defined in the usual way, with

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]


The space H1(Ω) is equipped with the norm

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII].


If Ω is bounded, another Banach space H10(Ω) arises by taking the closure of C∞0(Ω), the set of infinitely differentiable functions with compact support in Ω, in H1(Ω). We will also need the space H1loc(Rd\[bar.Ω]) of functions u [member of] L2loc(Rd\[bar.Ω]), the set of locally square summable functions in Rd\[bar.Ω], such that

h u [member of] H1 (Rd\[bar.Ω]) [for all] h [member of] C∞0(Rd\[bar.Ω].


Furthermore, we define H2(Ω) as the space of functions u [member of] H1(Ω) such that [partial derivative]2ij u [member of] L2(Ω), for i, j = 1, ..., d, and the space H3/2(Ω) as the interpolation space [H1(Ω), H2(Ω)]1/2 (see, for example, the book by Bergh and Löfström [49]).

It is known that the trace operator [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] is a bounded linear surjective operator from H1(Ω) into H1/2([partial derivative]Ω), where H1/2([partial derivative]Ω) is the collection of functions f [member of] L2([partial derivative]Ω) such that

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]


We set H-1/2([partial derivative]Ω) = (H1/2([partial derivative]Ω))* and let < , >1/2, -1/2 denote the duality pair between these dual spaces.

We introduce a weighted norm, [MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII], in two dimensions. Let

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1.1)


This weighted norm is introduced because, as will be shown later, the solutions of the static elasticity equation behave like O(|x|-1) in two dimensions as |x| -> ∞. For convenience, we set

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1.2)


In three dimensions, W(Rd\[bar.Ω]) is the usual Sobolev space.

We also define the Banach space W1,∞(Ω) by

W1,∞(Ω) = {u [member of] L∞(Ω) : [nabla]u [member of] L∞(Ω) (1.3)


where [nabla]u is interpreted as a distribution and L∞(Ω) is defined in the usual way, with

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII].


We will need the following Hilbert spaces for deriving the Helmholtz decomposition theorem

Hcurl(Ω):= {u [member of] L2(Ω)d, [nabla] × u [member of] L2 (Ω)d},


equipped with the norm

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII],


and

Hdiv(Ω) := {u [member of] L2(Ω)d, [nabla] · u [member of] L2(Ω)},


equipped with the norm

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]


Finally, let T1, ..., Td-1 be an orthonormal basis for the tangent plane to [partial derivative]Ω at x and let

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1.4)


denote the tangential derivative on [partial derivative]Ω. We say that f [member of] H1([partial derivative]Ω) if f [member of] L2([partial derivative]Ω) and [partial derivative]f/[partial derivatve]T [member of] L2([partial derivative]Ω)d-1. Furthermore, we define H-1([partial derivative]Ω) as the dual of H1([partial derivative]Ω) and the space Hs([partial derivative]Ω), for 0 ≥ s ≥ 1, as the interpolation space [L2([partial derivative]Ω), H1([partial derivative]Ω)]s or, equivalently, as the set of functions f [member of] L2([partial derivative]Ω) such that

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]


see again [49].


1.2 ELASTICITY EQUATIONS

Let Ω be a domain in Rd, d = 2,3. Let λ and μ be the Lamé constants for Ω satisfying the strong convexity condition

μ > 0 and dλ + 2μ > 0. (1.5)


The constants [lamda] and μ are respectively referred to as the compression modulus and the shear modulus. The compression modulus measures the resistance of the material to compression and the shear modulus measures the resistance to shearing. We also introduce the bulk modulus β := λ + 2μ/d. We refer the reader to [122, p.11] for an explanation of the physical significance of (1.5).

In a homogeneous isotropic elastic medium, the elastostatic operator corresponding to the Lamé constants λ, μ, is given by

Lλ,μ u := μΔu + (λ + μ)[nabla][nabla] · u, u : Ω -> Rd. (1.6)


If Ω is bounded with a connected Lipschitz boundary, then we define the conormal derivative [partial derivative]u/[partial derivative]v by

[partial derivative]u/[partial derivative]v = λ([nabla] · u)n + μ([nabla]u + [nabla]ut)n, (1.7)


where [nabla]u is the matrix ([partial derivative]jui)di,j=1 with ui being the i-th component of u, the superscript t denotes the transpose, and n is the outward unit normal to the boundary [partial derivative]Ω.

Note that the conormal derivative has a direct physical meaning:

[partial derivative]u/[partial derivative]v = traction on [partial derivative]Ω.


The vector u is the displacement field of the elastic medium having the Lamé coefficients λ and μ, and the symmetric gradient

[nabla]su := ([nabla]u + [nabla]ut)/2


is the strain tensor.

In Rd, d = 2, 3, let

I := δij ei [cross product] ej,

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII]


with (e1, ..., ed) being the canonical basis of Rd and [cross product] denoting the tensor product between vectors in Rd. Here, I is the d × d identity matrix or 2-tensor while I is the identity 4-tensor.

Define the elasticity tensor C = (Cijkl)di,j,k,l=1 for Rd by

Cijkl = λδij δkl + μ([delt]ikδjl + δilδjk), (1.8)


which can be written as

C := λI [cross product] I + 2μI.


With this notation, we have

Lλ,μu = [nabla] · C[nabla]su,


and

[partial derivative]u/[partial derivative]v = (C[nabla]su)n = σ(u)n,


where σ(u) is the stress tensor given by

σ(u) = C[nabla]s u.


Now, we consider the elastic wave equation

ρ[partial derivative]2tU - Lλ,μU = 0,


where the positive constant ρ is the density of the medium. Then, we obtain a time-harmonic solution U(x, t) = Re]e-iωtu(x)] if the space-dependent part u satisfies the time-harmonic elasticity equation for the displacement field,

(Lλ,μ + ω2ρ)u = 0, (1.9)


with ω being the angular frequency.

The time-harmonic elasticity equation (1.9) has a special family of solutions called p- and s-plane waves:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1.10)


for θ [member of] Sd-1 := {θ [member of] Rd : |θ| = 1} the direction of the wavevector and θ[perpendicular to] is such that |θ[perpendicular to]| = 1 and θ[perpendicular to] • θ = 0. Note that Up is irrotational while Us is solenoidal.

Taking the limit ω -> 0 in (1.9) yields the static elasticity equation

Lλ,μu = 0. (1.11)


In a bounded domain Ω, the equations (1.9) and (1.11) need to be supplemented with boundary conditions at [partial derivative]Ω. If [partial derivative]Ω is a stress-free surface, the traction acting on [partial derivative]Ω vanishes:

[partial derivative]u/[partial derivative]v = 0.


This boundary condition is appropriate when the surface [partial derivative]Ω forms the outer boundary on the elastic body that is surrounded by empty space.

In a homogeneous, isotropic medium, using the Helmholtz decomposition theorem, the displacement field can be decomposed into the sum of an irrotational and a solenoidal field. Assume that Ω is simply connected and its boundary [partial derivative]Ω is connected. The Helmholtz decomposition states that for w [member of] L2(Ω)d there exist φw [member of] H1(Ω) and ψw [member of] Hcurl(Ω) [intersection] Hdiv(Ω) such that

w = [nabla]φw + [nabla] × φw. (1.12)


The Helmholtz decomposition (1.12) can be found by solving the following weak Neumann problem in Ω [38, 78]:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1.3)


The function φw [member of] H1(Ω) is uniquely defined up to an additive constant. In order to uniquely define the function ψw, we impose that it satisfies the following properties [53]:

[MATHEMATICAL EXPRESSION NOT REPRODUCIBLE IN ASCII] (1.14)


The boundary condition ([nabla] × ψw) · n = 0 on [partial derivative]Ω shows that the gradient and curl parts in (1.12) are orthogonal.


(Continues...)
Excerpted from Mathematical Methods in Elasticity Imaging by Habib Ammari, Elie Bretin, Josselin Garnier, Hyeonbae Kang, Hyundae Lee, Abdul Wahab. Copyright © 2015 Princeton University Press. Excerpted by permission of PRINCETON UNIVERSITY PRESS.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialPrinceton University Press
  • Año de publicación2015
  • ISBN 10 0691165319
  • ISBN 13 9780691165318
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de páginas240
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Bien
Unread hardcover; corner bump to...
Ver este artículo

EUR 22,61 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,17 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Mathematical Methods in Elasticity Imaging: 52 (Princeton...

Imagen de archivo

Ammari, Habib; Bretin, Elie; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul
Publicado por Princeton University Press, 2015
ISBN 10: 0691165319 ISBN 13: 9780691165318
Antiguo o usado Tapa dura Original o primera edición

Librería: Reilly Books, Richmond, VA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Very Good. 1st Edition. Unread hardcover; corner bump to upper right, else as new. Nº de ref. del artículo: ABE-1676775582819

Contactar al vendedor

Comprar usado

EUR 32,31
Convertir moneda
Gastos de envío: EUR 22,61
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ammari, Habib, Bretin, Elie, Garnier, Josselin, Kang, Hyeonbae, Lee, Hyundae, Wahab, Abdul
Publicado por Princeton University Press, 2015
ISBN 10: 0691165319 ISBN 13: 9780691165318
Nuevo Tapa dura

Librería: Labyrinth Books, Princeton, NJ, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 181085

Contactar al vendedor

Comprar nuevo

EUR 43,06
Convertir moneda
Gastos de envío: EUR 19,17
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 6 disponibles

Añadir al carrito

Imagen de archivo

Habib Ammari
Publicado por Princeton University Press, 2015
ISBN 10: 0691165319 ISBN 13: 9780691165318
Nuevo Tapa dura

Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WP-9780691165318

Contactar al vendedor

Comprar nuevo

EUR 64,69
Convertir moneda
Gastos de envío: EUR 0,99
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ammari, Habib, et. al
Publicado por Princeton, 2015
ISBN 10: 0691165319 ISBN 13: 9780691165318
Antiguo o usado Tapa dura

Librería: Moe's Books, Berkeley, CA, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Very Good. Nº de ref. del artículo: 1123624

Contactar al vendedor

Comprar usado

EUR 31,41
Convertir moneda
Gastos de envío: EUR 39,21
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Habib Ammari
Publicado por Princeton University Press, 2015
ISBN 10: 0691165319 ISBN 13: 9780691165318
Nuevo Tapa dura

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WP-9780691165318

Contactar al vendedor

Comprar nuevo

EUR 72,26
Convertir moneda
Gastos de envío: EUR 4,32
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ammari, Habib; Bretin, Elie; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae
Publicado por Princeton University Press, 2015
ISBN 10: 0691165319 ISBN 13: 9780691165318
Nuevo Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 22091714-n

Contactar al vendedor

Comprar nuevo

EUR 62,31
Convertir moneda
Gastos de envío: EUR 17,42
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ammari, Habib; Bretin, Elie; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae
Publicado por Princeton University Press, 2015
ISBN 10: 0691165319 ISBN 13: 9780691165318
Nuevo Tapa dura

Librería: GreatBookPricesUK, Woodford Green, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 22091714-n

Contactar al vendedor

Comprar nuevo

EUR 62,29
Convertir moneda
Gastos de envío: EUR 17,53
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Habib Ammari
Publicado por Princeton University Press, 2015
ISBN 10: 0691165319 ISBN 13: 9780691165318
Nuevo Tapa dura

Librería: THE SAINT BOOKSTORE, Southport, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardback. Condición: New. New copy - Usually dispatched within 4 working days. 614. Nº de ref. del artículo: B9780691165318

Contactar al vendedor

Comprar nuevo

EUR 71,68
Convertir moneda
Gastos de envío: EUR 8,60
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ammari, Habib; Bretin, Elie; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae; Wahab, Abdul
Publicado por Princeton University Press, 2015
ISBN 10: 0691165319 ISBN 13: 9780691165318
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9780691165318_new

Contactar al vendedor

Comprar nuevo

EUR 76,07
Convertir moneda
Gastos de envío: EUR 4,65
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ammari, Habib; Bretin, Elie; Garnier, Josselin; Kang, Hyeonbae; Lee, Hyundae
Publicado por Princeton University Press, 2015
ISBN 10: 0691165319 ISBN 13: 9780691165318
Antiguo o usado Tapa dura

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 22091714

Contactar al vendedor

Comprar usado

EUR 68,00
Convertir moneda
Gastos de envío: EUR 17,42
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Existen otras 10 copia(s) de este libro

Ver todos los resultados de su búsqueda