Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. Their Fourier coefficients, with Ramanujan's tau-function as a typical example, have deep arithmetic significance. Prior to this book, the fastest known algorithms for computing these Fourier coefficients took exponential time, except in some special cases. The case of elliptic curves (Schoof's algorithm) was at the birth of elliptic curve cryptography around 1985. This book gives an algorithm for computing coefficients of modular forms of level one in polynomial time. For example, Ramanujan's tau of a prime number p can be computed in time bounded by a fixed power of the logarithm of p. Such fast computation of Fourier coefficients is itself based on the main result of the book: the computation, in polynomial time, of Galois representations over finite fields attached to modular forms by the Langlands program. Because these Galois representations typically have a nonsolvable image, this result is a major step forward from explicit class field theory, and it could be described as the start of the explicit Langlands program.
The computation of the Galois representations uses their realization, following Shimura and Deligne, in the torsion subgroup of Jacobian varieties of modular curves. The main challenge is then to perform the necessary computations in time polynomial in the dimension of these highly nonlinear algebraic varieties. Exact computations involving systems of polynomial equations in many variables take exponential time. This is avoided by numerical approximations with a precision that suffices to derive exact results from them. Bounds for the required precision--in other words, bounds for the height of the rational numbers that describe the Galois representation to be computed--are obtained from Arakelov theory. Two types of approximations are treated: one using complex uniformization and another one using geometry over finite fields.
The book begins with a concise and concrete introduction that makes its accessible to readers without an extensive background in arithmetic geometry. And the book includes a chapter that describes actual computations.
"Sinopsis" puede pertenecer a otra edición de este libro.
Bas Edixhoven is professor of mathematics at the University of Leiden. Jean-Marc Couveignes is professor of mathematics at the University of Toulouse le Mirail. Robin de Jong is assistant professor at the University of Leiden. Franz Merkl is professor of applied mathematics at the University of Munich. Johan Bosman is a postdoctoral researcher at the Institut fur Experimentelle Mathematik in Essen, Germany.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 36,97 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 18,94 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Labyrinth Books, Princeton, NJ, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 131725
Cantidad disponible: 7 disponibles
Librería: Daedalus Books, Portland, OR, Estados Unidos de America
Paperback. Condición: Near Fine. A nice, solid copy. ; Annals Of Mathematics Studies; Vol. 176; 6.5 X 1 X 9.5 inches; 425 pages. Nº de ref. del artículo: 326617
Cantidad disponible: 1 disponibles
Librería: Daedalus Books, Portland, OR, Estados Unidos de America
Paperback. Condición: Near Fine. A nice, solid copy. ; Annals of Mathematics Studies; Vol. 176; 6.5 X 1 X 9.5 inches; 425 pages. Nº de ref. del artículo: 330449
Cantidad disponible: 1 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. This title gives an algorithm for computing coefficients of modular forms of level one in polynomial time. Editor(s): Edixhoven, Bas; Couveignes, Jean-Marc. Series: Annals of Mathematics Studies. Num Pages: 440 pages, 6 line illus. BIC Classification: PBH; PBMW. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 234 x 157 x 22. Weight in Grams: 622. . 2011. Paperback. . . . . Nº de ref. del artículo: V9780691142029
Cantidad disponible: 1 disponibles
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: WP-9780691142029
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780691142029_new
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Modular forms are tremendously important in various areas of mathematics, from number theory and algebraic geometry to combinatorics and lattices. This title gives an algorithm for computing coefficients of modular forms of level one in polynomial time. Nº de ref. del artículo: 594884219
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 658. Nº de ref. del artículo: B9780691142029
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 5881953
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 5881953
Cantidad disponible: 1 disponibles