In this introductory text, the fundamental algorithms of numerical linear algebra are developed in a parallel context.
"Sinopsis" puede pertenecer a otra edición de este libro.
Ronald W. Shonkwiler is a Professor in the School of Mathematics at the Georgia Institute of Technology. He has authored or co-authored over 50 research papers in areas of functional analysis, mathematical biology, image processing algorithms, fractal geometry, neural networks and Monte Carlo optimization methods. His algorithm for monochrome image comparison is part of a US patent for fractal image compression. He has co-authored two other books, An Introduction to the Mathematics of Biology and The Handbook of Stochastic Analysis and Applications.
Lew Lefton is the Director of Information Technology at the Georgia Institute of Technology where he has built and maintained several computing clusters which are used to implement parallel computations. Prior to that he was a tenured faculty member in the Department of Mathematics at the University of New Orleans. His academic interests are in differential equations, applied mathematics, numerical analysis (in particular, finite element methods) and scientific computing.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 14,90 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 4,67 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Buchpark, Trebbin, Alemania
Condición: Hervorragend. Zustand: Hervorragend | Seiten: 308 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 3603053/1
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780521864787_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9780521864787
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 308 9:B&W 6 x 9 in or 229 x 152 mm Case Laminate on Creme w/Gloss Lam. Nº de ref. del artículo: 7446514
Cantidad disponible: 3 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 650. Nº de ref. del artículo: C9780521864787
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Hardcover. Condición: Brand New. 1st edition. 288 pages. 9.00x6.00x0.75 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __052186478X
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 308. Nº de ref. del artículo: 26401453
Cantidad disponible: 3 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Über den AutorRonald W. Shonkwiler is a Professor in the School of Mathematics at the Georgia Institute of Technology. He has authored or co-authored over 50 research papers in areas of functional analysis, mathematical biology, ima. Nº de ref. del artículo: 446951227
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 308. Nº de ref. del artículo: 18401447
Cantidad disponible: 3 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condición: new. Hardcover. In this text, students of applied mathematics, science and engineering are introduced to fundamental ways of thinking about the broad context of parallelism. The authors begin by giving the reader a deeper understanding of the issues through a general examination of timing, data dependencies, and communication. These ideas are implemented with respect to shared memory, parallel and vector processing, and distributed memory cluster computing. Threads, OpenMP, and MPI are covered, along with code examples in Fortran, C, and Java. The principles of parallel computation are applied throughout as the authors cover traditional topics in a first course in scientific computing. Building on the fundamentals of floating point representation and numerical error, a thorough treatment of numerical linear algebra and eigenvector/eigenvalue problems is provided. By studying how these algorithms parallelize, the reader is able to explore parallelism inherent in other computations, such as Monte Carlo methods. In this text, students of applied mathematics, science and engineering are introduced to fundamental ways of thinking about the broad context of parallelism. The authors begin by giving the reader a deeper understanding of the issues through a general examination of timing, data dependencies, and communication. These ideas are implemented with respect to shared memory, parallel and vector processing, and distributed memory cluster computing. Threads, OpenMP, and MPI are covered, along with code examples in Fortran, C, and Java. The principles of parallel computation are applied throughout as the authors cover traditional topics in a first course in scientific computing. Building on the fundamentals of floating point representation and numerical error, a thorough treatment of numerical linear algebra and eigenvector/eigenvalue problems is provided. By studying how these algorithms parallelize, the reader is able to explore parallelism inherent in other computations, such as Monte Carlo methods. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9780521864787
Cantidad disponible: 1 disponibles