Non-commutative fields (also called skew fields or division rings) have not been studied as thoroughly as their commutative counterparts, and most accounts have hitherto been confined to division algebras - that is skew fields finite dimensional over their centre. Based on the author's LMS lecture note volume Skew Field Constructions, the present work offers a comprehensive account of skew fields. The axiomatic foundation, and a precise description of the embedding problem, is followed by an account of algebraic and topological construction methods, in particular, the author's general embedding theory is presented with full proofs, leading to the construction of skew fields. The powerful coproduct theorem of G. M. Bergman is proved here, as well as the properties of the matrix reduction functor, a useful but little-known construction providing a source of examples and counter-examples. The construction and basic properties of existentially closed skew fields are given, leading to an example of a model class with an infinite forcing companion which is not axiomatizable.
"Sinopsis" puede pertenecer a otra edición de este libro.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580241027
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. Non-commutative fields (also called skew fields or division rings) have not been studied as thoroughly as their commutative counterparts, and most accounts have hitherto been confined to division algebras - that is skew fields finite dimensional over their centre. Based on the author's LMS lecture note volume Skew Field Constructions, the present work offers a comprehensive account of skew fields. The axiomatic foundation, and a precise description of the embedding problem, is followed by an account of algebraic and topological construction methods, in particular, the author's general embedding theory is presented with full proofs, leading to the construction of skew fields. The powerful coproduct theorem of G. M. Bergman is proved here, as well as the properties of the matrix reduction functor, a useful but little-known construction providing a source of examples and counter-examples. The construction and basic properties of existentially closed skew fields are given, leading to an example of a model class with an infinite forcing companion which is not axiomatizable. Algebraists have studied noncommutative fields (also called skew fields or division rings) less thoroughly than their commutative counterparts. Most existing accounts have been confined to division algebras, i.e. skew fields that are finite dimensional over their center. This work offers the first comprehensive account of skew fields. It is based on the author's LMS Lecture Note Volume "Skew Field Constructions." The axiomatic foundation and a precise description of the embedding problem precedes an account of algebraic and topological construction methods. The author presents his general embedding theory with full proofs, leading to the construction of skew fields. The author has simplified his treatment of equations over skew fields and has extended it by the use of matrix methods. A separate chapter describes valuations and orderings on skew fields, with a construction applicable to free fields. Numerous exercises test the reader's understanding, presenting further aspects and open problems in concise form. Notes and comments at the end of chapters provide historical background. The book will appeal to researchers in algebra, logic, and algebraic geometry, as well as graduate students in these fields. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780521062947
Cantidad disponible: 1 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9780521062947
Cantidad disponible: Más de 20 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 1st edition. 516 pages. 9.50x6.00x1.25 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __0521062942
Cantidad disponible: 1 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 750. Nº de ref. del artículo: C9780521062947
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 520. Nº de ref. del artículo: 26409472
Cantidad disponible: 4 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. Non-commutative fields (also called skew fields or division rings) have not been studied as thoroughly as their commutative counterparts, and most accounts have hitherto been confined to division algebras - that is skew fields finite dimensional over their centre. Based on the author's LMS lecture note volume Skew Field Constructions, the present work offers a comprehensive account of skew fields. The axiomatic foundation, and a precise description of the embedding problem, is followed by an account of algebraic and topological construction methods, in particular, the author's general embedding theory is presented with full proofs, leading to the construction of skew fields. The powerful coproduct theorem of G. M. Bergman is proved here, as well as the properties of the matrix reduction functor, a useful but little-known construction providing a source of examples and counter-examples. The construction and basic properties of existentially closed skew fields are given, leading to an example of a model class with an infinite forcing companion which is not axiomatizable. Algebraists have studied noncommutative fields (also called skew fields or division rings) less thoroughly than their commutative counterparts. Most existing accounts have been confined to division algebras, i.e. skew fields that are finite dimensional over their center. This work offers the first comprehensive account of skew fields. It is based on the author's LMS Lecture Note Volume "Skew Field Constructions." The axiomatic foundation and a precise description of the embedding problem precedes an account of algebraic and topological construction methods. The author presents his general embedding theory with full proofs, leading to the construction of skew fields. The author has simplified his treatment of equations over skew fields and has extended it by the use of matrix methods. A separate chapter describes valuations and orderings on skew fields, with a construction applicable to free fields. Numerous exercises test the reader's understanding, presenting further aspects and open problems in concise form. Notes and comments at the end of chapters provide historical background. The book will appeal to researchers in algebra, logic, and algebraic geometry, as well as graduate students in these fields. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780521062947
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Based on the author s LMS lecture note volume Skew Field Constructions, the present work offers a comprehensive account of skew fields. Numerous exercises test the reader s understanding, presenting further aspects and open problems in a concise form. The n. Nº de ref. del artículo: 446923536
Cantidad disponible: Más de 20 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 520. Nº de ref. del artículo: 18409482
Cantidad disponible: 4 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Paperback. Condición: new. Paperback. Non-commutative fields (also called skew fields or division rings) have not been studied as thoroughly as their commutative counterparts, and most accounts have hitherto been confined to division algebras - that is skew fields finite dimensional over their centre. Based on the author's LMS lecture note volume Skew Field Constructions, the present work offers a comprehensive account of skew fields. The axiomatic foundation, and a precise description of the embedding problem, is followed by an account of algebraic and topological construction methods, in particular, the author's general embedding theory is presented with full proofs, leading to the construction of skew fields. The powerful coproduct theorem of G. M. Bergman is proved here, as well as the properties of the matrix reduction functor, a useful but little-known construction providing a source of examples and counter-examples. The construction and basic properties of existentially closed skew fields are given, leading to an example of a model class with an infinite forcing companion which is not axiomatizable. Algebraists have studied noncommutative fields (also called skew fields or division rings) less thoroughly than their commutative counterparts. Most existing accounts have been confined to division algebras, i.e. skew fields that are finite dimensional over their center. This work offers the first comprehensive account of skew fields. It is based on the author's LMS Lecture Note Volume "Skew Field Constructions." The axiomatic foundation and a precise description of the embedding problem precedes an account of algebraic and topological construction methods. The author presents his general embedding theory with full proofs, leading to the construction of skew fields. The author has simplified his treatment of equations over skew fields and has extended it by the use of matrix methods. A separate chapter describes valuations and orderings on skew fields, with a construction applicable to free fields. Numerous exercises test the reader's understanding, presenting further aspects and open problems in concise form. Notes and comments at the end of chapters provide historical background. The book will appeal to researchers in algebra, logic, and algebraic geometry, as well as graduate students in these fields. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9780521062947
Cantidad disponible: 1 disponibles