An up-to-date approach to understanding statistical inference
Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas.
Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics.
The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions.
Chapter coverage includes:
"Sinopsis" puede pertenecer a otra edición de este libro.
MERVYN J. SILVAPULLE, PhD, is an Associate Professor in the Department of Statistical Science at La Trobe University in Bundoora, Australia. He received his PhD in statistics from the Australian National University in 1981.
PRANAB K. SEN, PhD, is a Professor in the Departments of Biostatistics and Statistics and Operations Research at the University of North Carolina at Chapel Hill. He received his PhD in 1962 from Calcutta University, India.
An up-to-date approach to understanding statistical inference
Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas.
Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics.
The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions.
Chapter coverage includes:
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 16,97 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 4,61 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: PBShop.store UK, Fairford, GLOS, Reino Unido
HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: FW-9780471208273
Cantidad disponible: 15 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780471208273_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 1544515-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 1544515-n
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 1544515
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 1544515
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Gebunden. Condición: New. MERVYN J. SILVAPULLE, PhD, is an Associate Professor in the Department of Statistical Science at La Trobe University in Bundoora, Australia. He received his PhD in statistics from the Australian National University in 1981.PRANAB K. SEN, PhD, is a Professor. Nº de ref. del artículo: 446915235
Cantidad disponible: Más de 20 disponibles
Librería: Solr Books, Lincolnwood, IL, Estados Unidos de America
Condición: very_good. This books is in Very good condition. There may be a few flaws like shelf wear and some light wear. Nº de ref. del artículo: 5D400000B8W1_ns
Cantidad disponible: 1 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Hardcover. Condición: new. Hardcover. An up-to-date approach to understanding statistical inference Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas. Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics. The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions. Chapter coverage includes: Population means and isotonic regressionInequality-constrained tests on normal meansTests in general parametric modelsLikelihood and alternativesAnalysis of categorical dataInference on monotone density function, unimodal density function, shape constraints, and DMRL functionsBayesian perspectives, including Steins Paradox, shrinkage estimation, and decision theory An up-to-date approach to understanding statistical inference Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780471208273
Cantidad disponible: 1 disponibles
Librería: AussieBookSeller, Truganina, VIC, Australia
Hardcover. Condición: new. Hardcover. An up-to-date approach to understanding statistical inference Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. This volume enables professionals in these and related fields to master the concepts of statistical inference under inequality constraints and to apply the theory to problems in a variety of areas. Constrained Statistical Inference: Order, Inequality, and Shape Constraints provides a unified and up-to-date treatment of the methodology. It clearly illustrates concepts with practical examples from a variety of fields, focusing on sociology, econometrics, and biostatistics. The authors also discuss a broad range of other inequality-constrained inference problems that do not fit well in the contemplated unified framework, providing a meaningful way for readers to comprehend methodological resolutions. Chapter coverage includes: Population means and isotonic regressionInequality-constrained tests on normal meansTests in general parametric modelsLikelihood and alternativesAnalysis of categorical dataInference on monotone density function, unimodal density function, shape constraints, and DMRL functionsBayesian perspectives, including Steins Paradox, shrinkage estimation, and decision theory An up-to-date approach to understanding statistical inference Statistical inference is finding useful applications in numerous fields, from sociology and econometrics to biostatistics. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9780471208273
Cantidad disponible: 1 disponibles