Deep Learning for Multi-Sensor Earth Observation addresses the need for transformative Deep Learning techniques to navigate the complexity of multi-sensor data fusion. With insights drawn from the frontiers of remote sensing technology and AI advancements, it covers the potential of fusing data of varying spatial, spectral, and temporal dimensions from both active and passive sensors. This book offers a concise, yet comprehensive, resource, addressing the challenges of data integration and uncertainty quantification from foundational concepts to advanced applications. Case studies illustrate the practicality of deep learning techniques, while cutting-edge approaches such as self-supervised learning, graph neural networks, and foundation models chart a course for future development. Structured for clarity, the book builds upon its own concepts, leading readers through introductory explanations, sensor-specific insights, and ultimately to advanced concepts and specialized applications. By bridging the gap between theory and practice, this volume equips researchers, geoscientists, and enthusiasts with the knowledge to reshape Earth observation through the dynamic lens of deep learning.
"Sinopsis" puede pertenecer a otra edición de este libro.
Sudipan Saha is currently an Assistant Professor at Yardi School of Artificial Intelligence, Indian Institute of Technology (IIT) Delhi, New Delhi, India. Previously, he worked as a postdoctoral researcher at the Artificial Intelligence for Earth Observation (AI4EO) Lab, Technical University of Munich, Germany (2020-2022). He received a Ph.D. degree in Information and Communication Technologies from the University of Trento and Fondazione Bruno Kessler (FBK), Trento, Italy in 2020, working with Dr. Francesca Bovolo and Prof. Lorenzo Bruzzone. He is the recipient of FBK Best Student Award 2020. Previously, he obtained the M.Tech. degree in Electrical Engineering from IIT Bombay, Mumbai, India in 2014 where he is recipient of Postgraduate Color. He worked as an Engineer with TSMC Limited, Hsinchu, Taiwan, from 2015 to 2016. His research interests are related to multi-temporal and multi-sensor satellite image analysis, uncertainty quantification, deep learning, and climate change.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 2,26 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 7,67 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9780443264849
Cantidad disponible: 2 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 48394930-n
Cantidad disponible: 2 disponibles
Librería: Brook Bookstore On Demand, Napoli, NA, Italia
Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: IXKESAICJ4
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
Paperback. Condición: new. Paperback. Deep Learning for Multi-Sensor Earth Observation addresses the need for transformative Deep Learning techniques to navigate the complexity of multi-sensor data fusion. With insights drawn from the frontiers of remote sensing technology and AI advancements, it covers the potential of fusing data of varying spatial, spectral, and temporal dimensions from both active and passive sensors. This book offers a concise, yet comprehensive, resource, addressing the challenges of data integration and uncertainty quantification from foundational concepts to advanced applications. Case studies illustrate the practicality of deep learning techniques, while cutting-edge approaches such as self-supervised learning, graph neural networks, and foundation models chart a course for future development.Structured for clarity, the book builds upon its own concepts, leading readers through introductory explanations, sensor-specific insights, and ultimately to advanced concepts and specialized applications. By bridging the gap between theory and practice, this volume equips researchers, geoscientists, and enthusiasts with the knowledge to reshape Earth observation through the dynamic lens of deep learning. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9780443264849
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Nº de ref. del artículo: 410714663
Cantidad disponible: 3 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 26403488248
Cantidad disponible: 3 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 48394930
Cantidad disponible: 2 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. Nº de ref. del artículo: 18403488242
Cantidad disponible: 3 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 350 pages. 9.00x6.00x8.93 inches. In Stock. Nº de ref. del artículo: __0443264848
Cantidad disponible: 2 disponibles
Librería: CitiRetail, Stevenage, Reino Unido
Paperback. Condición: new. Paperback. Deep Learning for Multi-Sensor Earth Observation addresses the need for transformative Deep Learning techniques to navigate the complexity of multi-sensor data fusion. With insights drawn from the frontiers of remote sensing technology and AI advancements, it covers the potential of fusing data of varying spatial, spectral, and temporal dimensions from both active and passive sensors. This book offers a concise, yet comprehensive, resource, addressing the challenges of data integration and uncertainty quantification from foundational concepts to advanced applications. Case studies illustrate the practicality of deep learning techniques, while cutting-edge approaches such as self-supervised learning, graph neural networks, and foundation models chart a course for future development.Structured for clarity, the book builds upon its own concepts, leading readers through introductory explanations, sensor-specific insights, and ultimately to advanced concepts and specialized applications. By bridging the gap between theory and practice, this volume equips researchers, geoscientists, and enthusiasts with the knowledge to reshape Earth observation through the dynamic lens of deep learning. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9780443264849
Cantidad disponible: 1 disponibles