This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a very timely manner. Our special thanks go to our spouses, Gautami and Draga, for their support.
"Sinopsis" puede pertenecer a otra edición de este libro.
This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling, using independent priors. Papers in the Part III discuss decision theoretic aspects of such prior models. In Part IV, some aspects of prior modeling using priors that account for dependence are explored. Part V considers the use of 2-dimensional wavelet decomposition in spatial modeling. Chapters in Part VI discuss the use of empirical Bayes estimation in wavelet based models. Part VII concludes the volume with a discussion of case studies using wavelet based Bayesian approaches. The cooperation of all contributors in the timely preparation of their manuscripts is greatly recognized. We decided early on that it was impor tant to referee and critically evaluate the papers which were submitted for inclusion in this volume. For this substantial task, we relied on the service of numerous referees to whom we are most indebted. We are also grateful to John Kimmel and the Springer-Verlag referees for considering our proposal in a very timely manner. Our special thanks go to our spouses, Gautami and Draga, for their support.
This volume provides a thorough introduction and reference for any researcher who is interested in Bayesian inference for wavelet-based models, but is not necessarily an expert in either. To achieve this goal the book starts with an extensive introductory chapter providing a self-contained introduction to the use of wavelet decompositions and the relation to Bayesian inference. The remaining papers in this volume are divided into six parts: independent prior modeling; decision theoretic aspects; dependent prior modeling; spatial models using bivariate wavelet bases; empirical Bayes approaches; and case studies. Chapters are written by experts who published the original research papers establishing the use of wavelet-based models in Bayesian inference. Peter Müller is Associate Professor and Brani Vidakovic is Assistant Professor of Statistics at Duke University.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
paperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_430349764
Cantidad disponible: 1 disponibles
Librería: Ammareal, Morangis, Francia
Softcover. Condición: Bon. Ancien livre de bibliothèque. Livre un peu vrillé. Petite(s) trace(s) de pliure sur la couverture. Légères traces d'usure sur la couverture. Salissures sur la tranche. Traces d'humidité sur les pages. Traces d'humidité sur les premières et dernières pages ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Book slightly twisted. Slightly creased cover. Slight signs of wear on the cover. Stains on the edge. Traces of humidity on the pages. Traces of humidity on the first and last pages. Edition 1999. Ammareal gives back up to 15% of this. Nº de ref. del artículo: E-812-762
Cantidad disponible: 1 disponibles
Librería: Ammareal, Morangis, Francia
Softcover. Condición: Bon. Ancien livre de bibliothèque. Petite(s) trace(s) de pliure sur la couverture. Edition 1999. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Slightly creased cover. Edition 1999. Ammareal gives back up to 15% of this item's net price to charity organizations. Nº de ref. del artículo: E-563-401
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580175553
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This volume provides a thorough introduction and reference for any researcher who is interested in Bayesian inference for wavelet-based models, but is not necessarily an expert in either. To achieve this goal the book starts with an extensive introductory chapter providing a self-contained introduction to the use of wavelet decompositions and the relation to Bayesian inference. The remaining papers in this volume are divided into six parts: independent prior modeling; decision theoretic aspects; dependent prior modeling; spatial models using bivariate wavelet bases; empirical Bayes approaches; and case studies. Chapters are written by experts who published the original research papers establishing the use of wavelet-based models in Bayesian inference. 416 pp. Englisch. Nº de ref. del artículo: 9780387988856
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This volume presents an overview of Bayesian methods for inference in the wavelet domain. The papers in this volume are divided into six parts: The first two papers introduce basic concepts. Chapters in Part II explore different approaches to prior modeling. Nº de ref. del artículo: 5913551
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 416. Nº de ref. del artículo: 262579912
Cantidad disponible: 4 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 611. Nº de ref. del artículo: C9780387988856
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 416 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 5300759
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 416. Nº de ref. del artículo: 182579906
Cantidad disponible: 4 disponibles