This introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book is an introduction to the theory of complex manifolds. The author's intent is to familiarize the reader with the most important branches and methods in complex analysis of several variables and to do this as simply as possible. Therefore, the abstract concepts involving sheaves, coherence, and higher-dimensional cohomology have been completely avoided. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Nevertheless, deep results can be proved, for example the Remmert-Stein theorem for analytic sets, finiteness theorems for spaces of cross sections in holomorphic vector bundles, and the solution of the Levi problem. Each chapter is complemented by a variety of examples and exercises. The only prerequisite needed to read this book is a knowledge of real analysis and some basic facts from algebra, topology, and the theory of one complex variable. The book can be used as a first introduction to several complex variables as well as a reference for the expert.
Klaus Fritzsche received his PhD from the University of Göttingen in 1975, under the direction of Professor Hans Grauert. Since 1984, he has been Professor of Mathematics at the University of Wuppertal, where he has been investigating convexity problems on complex spaces and teaching undergraduate and graduate courses on Real and Complex Analysis. Hans Grauert studied physics and mathematics in Mainz, Münster and Zürich. He received his PhD in mathematics from the University of Münster and in 1959 he became a full professor at the University of Göttingen. Professor Grauert is responsible for many important developments in mathematics in the Twentieth Century. Along with Reinhold Remmert, Karl Stein and Henri Cartan, he founded the theory of Several Complex Variables in its modern form. He also proved various important theorems, including Levi's Problem and the coherence of higher direct image sheaves. Professor Grauert is the author of 10 books and his Selected Papers was published by Springer in 1994.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Bookfarm, Löbnitz, Alemania
Hardcover. XV, [1], 392 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04808 9780387953953 Sprache: Englisch Gewicht in Gramm: 550. Nº de ref. del artículo: 2491051
Cantidad disponible: 1 disponibles
Librería: Downtown Books & News, Asheville, NC, Estados Unidos de America
Hardcover. Condición: Fine. no additional printings listed. 8vo (9.5"x6.25"). 472pp. Typographic paper-covered boards. Diagrams throughout. From the series: Graduate Texts in Mathematics (#213). No dj. as issued. Nº de ref. del artículo: 4207
Cantidad disponible: 1 disponibles
Librería: Antiquariat Smock, Freiburg, Alemania
Condición: Sehr gut. Formateinband: Pappband / gebundene Ausgabe XV, 392 S. (24 cm) 1st Edition; Gebunden; Sehr guter Zustand. Sprache: Englisch Gewicht in Gramm: 900 [Stichwörter: ]. Nº de ref. del artículo: 74015
Cantidad disponible: 1 disponibles
Librería: Moe's Books, Berkeley, CA, Estados Unidos de America
Hard cover. Condición: Good. No jacket. Top corners of boards and spine are bumped, but binding is tight. Ink annotations through page 7. Inside is otherwise clean and unmarked. Nº de ref. del artículo: 1136798
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Includes supplementary material: sn.pub/extrasThis introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sh. Nº de ref. del artículo: 5912510
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This introduction to the theory of complex manifolds covers the most important branches and methods in complex analysis of several variables while completely avoiding abstract concepts involving sheaves, coherence, and higher-dimensional cohomology. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional cocycles are used. Each chapter contains a variety of examples and exercises. 416 pp. Englisch. Nº de ref. del artículo: 9780387953953
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The aim of this book is to give an understandable introduction to the the ory of complex manifolds. With very few exceptions we give complete proofs. Many examples and figures along with quite a few exercises are included. Our intent is to familiarize the reader with the most important branches and methods in complex analysis of several variables and to do this as simply as possible. Therefore, the abstract concepts involved with sheaves, coherence, and higher-dimensional cohomology are avoided. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional co cycles are used. Nevertheless, deep results can be proved, for example the Remmert-Stein theorem for analytic sets, finiteness theorems for spaces of cross sections in holomorphic vector bundles, and the solution of the Levi problem. The first chapter deals with holomorphic functions defined in open sub sets of the space en. Many of the well-known properties of holomorphic functions of one variable, such as the Cauchy integral formula or the maxi mum principle, can be applied directly to obtain corresponding properties of holomorphic functions of several variables. Furthermore, certain properties of differentiable functions of several variables, such as the implicit and inverse function theorems, extend easily to holomorphic functions. Nº de ref. del artículo: 9780387953953
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In English. Nº de ref. del artículo: ria9780387953953_new
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 1816459-n
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Buch. Condición: Neu. Neuware -The aim of this book is to give an understandable introduction to the the ory of complex manifolds. With very few exceptions we give complete proofs. Many examples and figures along with quite a few exercises are included. Our intent is to familiarize the reader with the most important branches and methods in complex analysis of several variables and to do this as simply as possible. Therefore, the abstract concepts involved with sheaves, coherence, and higher-dimensional cohomology are avoided. Only elementary methods such as power series, holomorphic vector bundles, and one-dimensional co cycles are used. Nevertheless, deep results can be proved, for example the Remmert-Stein theorem for analytic sets, finiteness theorems for spaces of cross sections in holomorphic vector bundles, and the solution of the Levi problem. The first chapter deals with holomorphic functions defined in open sub sets of the space en. Many of the well-known properties of holomorphic functions of one variable, such as the Cauchy integral formula or the maxi mum principle, can be applied directly to obtain corresponding properties of holomorphic functions of several variables. Furthermore, certain properties of differentiable functions of several variables, such as the implicit and inverse function theorems, extend easily to holomorphic functions.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 416 pp. Englisch. Nº de ref. del artículo: 9780387953953
Cantidad disponible: 2 disponibles