This text is concerned with Bayesian learning, inference and forecasting in dynamic environments. We describe the structure and theory of classes of dynamic models and their uses in forecasting and time series analysis. The principles, models and methods of Bayesian forecasting and time - ries analysis have been developed extensively during the last thirty years. Thisdevelopmenthasinvolvedthoroughinvestigationofmathematicaland statistical aspects of forecasting models and related techniques. With this has come experience with applications in a variety of areas in commercial, industrial, scienti?c, and socio-economic ?elds. Much of the technical - velopment has been driven by the needs of forecasting practitioners and applied researchers. As a result, there now exists a relatively complete statistical and mathematical framework, presented and illustrated here. In writing and revising this book, our primary goals have been to present a reasonably comprehensive view of Bayesian ideas and methods in m- elling and forecasting, particularly to provide a solid reference source for advanced university students and research workers.
"Sinopsis" puede pertenecer a otra edición de este libro.
The second edition of this book includes revised, updated, and additional material on the structure, theory, and application of classes of dynamic models in Bayesian time series analysis and forecasting.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 14,95 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Alemania
gebundene Ausgabe. Condición: Gut. 2. Auflage;. 680 Seiten Der Erhaltungszustand des hier angebotenen Werks ist trotz seiner Bibliotheksnutzung sehr sauber und kann entsprechende Merkmale aufweisen (Rückenschild, Instituts-Stempel.). In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 1120. Nº de ref. del artículo: 2157588
Cantidad disponible: 1 disponibles
Librería: Attic Books (ABAC, ILAB), London, ON, Canada
Hardcover. Condición: As new. Second Edition. Springer Series in Statistics. xiv, 680, [1] p. 24 cm. 115 figures. Yellow hardcover. Topics: the dynamic linear model; DLM theory; polynomial trend, seasonal, regression, autoregression, and related models; multi-process models; non-linear dynamic models; exponential family dynamic models; multivariate modelling and forecasting; distribution theory and linear algebra; etc. Bibliography and index. Nº de ref. del artículo: 116416
Cantidad disponible: 1 disponibles
Librería: Studibuch, Stuttgart, Alemania
hardcover. Condición: Gut. 696 Seiten; 9780387947259.3 Gewicht in Gramm: 2. Nº de ref. del artículo: 912849
Cantidad disponible: 1 disponibles
Librería: Reader's Corner, Inc., Raleigh, NC, Estados Unidos de America
Hardcover. Condición: As New. No Jacket. 2nd Edition. This is a fine, as new, hardcover second edition copy, no DJ, pale brown spine. Nº de ref. del artículo: 103792
Cantidad disponible: 1 disponibles
Librería: Anybook.com, Lincoln, Reino Unido
Condición: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1150grams, ISBN:9780387947259. Nº de ref. del artículo: 5845159
Cantidad disponible: 1 disponibles
Librería: Anybook.com, Lincoln, Reino Unido
Condición: Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In fair condition, suitable as a study copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1200grams, ISBN:9780387947259. Nº de ref. del artículo: 4138256
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This text is concerned with Bayesian learning, inference and forecasting in dynamic environments. We describe the structure and theory of classes of dynamic models and their uses in forecasting and time series analysis. The principles, models and methods of. Nº de ref. del artículo: 5912159
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This text is concerned with Bayesian learning, inference and forecasting in dynamic environments. We describe the structure and theory of classes of dynamic models and their uses in forecasting and time series analysis. The principles, models and methods of Bayesian forecasting and time - ries analysis have been developed extensively during the last thirty years. Thisdevelopmenthasinvolvedthoroughinvestigationofmathematicaland statistical aspects of forecasting models and related techniques. With this has come experience with applications in a variety of areas in commercial, industrial, scienti c, and socio-economic elds. Much of the technical - velopment has been driven by the needs of forecasting practitioners and applied researchers. As a result, there now exists a relatively complete statistical and mathematical framework, presented and illustrated here. In writing and revising this book, our primary goals have been to present a reasonably comprehensive view of Bayesian ideas and methods in m- elling and forecasting, particularly to provide a solid reference source for advanced university students and research workers. 700 pp. Englisch. Nº de ref. del artículo: 9780387947259
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In English. Nº de ref. del artículo: ria9780387947259_new
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This text is concerned with Bayesian learning, inference and forecasting in dynamic environments. We describe the structure and theory of classes of dynamic models and their uses in forecasting and time series analysis. The principles, models and methods of Bayesian forecasting and time - ries analysis have been developed extensively during the last thirty years. Thisdevelopmenthasinvolvedthoroughinvestigationofmathematical and statistical aspects of forecasting models and related techniques. With this has come experience with applications in a variety of areas in commercial, industrial, scienti c, and socio-economic elds. Much of the technical - velopment has been driven by the needs of forecasting practitioners and applied researchers. As a result, there now exists a relatively complete statistical and mathematical framework, presented and illustrated here. In writing and revising this book, our primary goals have been to present a reasonably comprehensive view of Bayesian ideas and methods in m- elling and forecasting, particularly to provide a solid reference source for advanced university students and research workers. Nº de ref. del artículo: 9780387947259
Cantidad disponible: 1 disponibles