The aso theory developed in Chapters 8 - 12 presumes that the tan gent cones are linear spaces. In the present chapter we collect a few natural examples where the tangent cone fails to be a linear space. These examples are to remind the reader that an extension of the theo ry to convex tangent cones is wanted. Since the results are not needed in the rest of the book, we are more generous ab out regularity condi tions. The common feature of the examples is the following: Given a pre order (i.e., a reflexive and transitive order relation) on a family of p-measures, and a subfamily i of order equivalent p-measures, the fa mily ~ consists of p-measures comparable with the elements of i. This usually leads to a (convex) tangent cone 1f only p-measures larger (or smaller) than those in i are considered, or to a tangent co ne con sisting of a convex cone and its reflexion about 0 if both smaller and larger p-measures are allowed. For partial orders (i.e., antisymmetric pre-orders), ireduces to a single p-measure. we do not assume the p-measures in ~ to be pairwise comparable.
"Sinopsis" puede pertenecer a otra edición de este libro.
The aso theory developed in Chapters 8 - 12 presumes that the tan gent cones are linear spaces. In the present chapter we collect a few natural examples where the tangent cone fails to be a linear space. These examples are to remind the reader that an extension of the theo ry to convex tangent cones is wanted. Since the results are not needed in the rest of the book, we are more generous ab out regularity condi tions. The common feature of the examples is the following: Given a pre order (i.e., a reflexive and transitive order relation) on a family of p-measures, and a subfamily i of order equivalent p-measures, the fa mily ~ consists of p-measures comparable with the elements of i. This usually leads to a (convex) tangent cone 1f only p-measures larger (or smaller) than those in i are considered, or to a tangent co ne con sisting of a convex cone and its reflexion about 0 if both smaller and larger p-measures are allowed. For partial orders (i.e., antisymmetric pre-orders), ireduces to a single p-measure. we do not assume the p-measures in ~ to be pairwise comparable.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Alemania
Broschiert. Condición: Gut. 315 Seiten Das hier angebotene Buch stammt aus einer teilaufgelösten Bibliothek und kann die entsprechenden Kennzeichnungen aufweisen (Rückenschild, Instituts-Stempel.); der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 475. Nº de ref. del artículo: 2205051
Cantidad disponible: 1 disponibles
Librería: Moe's Books, Berkeley, CA, Estados Unidos de America
Soft cover. Condición: Very good. No jacket. Cover is faded near spine. Inside pages are clean and unmarked. Nº de ref. del artículo: 1131695
Cantidad disponible: 1 disponibles
Librería: Bookbot, Prague, Republica Checa
Softcover. Condición: Fair. Spuren von Feuchtigkeit / Nässe; Leichte Risse; Gebogener Buchrücken. The aso theory developed in Chapters 8 - 12 presumes that the tan- gent cones are linear spaces. In the present chapter we collect a few natural examples where the tangent cone fails to be a linear space. These examples are to remind the reader that an extension of the theo- ry to convex tangent cones is wanted. Since the results are not needed in the rest of the book, we are more generous ab out regularity condi- tions. The common feature of the examples is the Given a pre- order (i.e., a reflexive and transitive order relation) on a family of p-measures, and a subfamily i of order equivalent p-measures, the fa- mily consists of p-measures comparable with the elements of i. This usually leads to a (convex) tangent cone 1f only p-measures larger (or smaller) than those in i are considered, or to a tangent co ne con- sisting of a convex cone and its reflexion about 0 if both smaller and larger p-measures are allowed. For partial orders (i.e., antisymmetric pre-orders), ireduces to a single p-measure. we do not assume the p-measures in to be pairwise comparable. Nº de ref. del artículo: 3dbede91-9dd7-4789-8224-a570354d43c8
Cantidad disponible: 1 disponibles
Librería: Phatpocket Limited, Waltham Abbey, HERTS, Reino Unido
Condición: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Nº de ref. del artículo: Z1-I-027-01762
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580173806
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9780387907765
Cantidad disponible: 2 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9780387907765
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The aso theory developed in Chapters 8 - 12 presumes that the tan gent cones are linear spaces. In the present chapter we collect a few natural examples where the tangent cone fails to be a linear space. These examples are to remind the reader that an extension of the theo ry to convex tangent cones is wanted. Since the results are not needed in the rest of the book, we are more generous ab out regularity condi tions. The common feature of the examples is the following: Given a pre order (i.e., a reflexive and transitive order relation) on a family of p-measures, and a subfamily i of order equivalent p-measures, the fa mily ~ consists of p-measures comparable with the elements of i. This usually leads to a (convex) tangent cone 1f only p-measures larger (or smaller) than those in i are considered, or to a tangent co ne con sisting of a convex cone and its reflexion about 0 if both smaller and larger p-measures are allowed. For partial orders (i.e., antisymmetric pre-orders), ireduces to a single p-measure. we do not assume the p-measures in ~ to be pairwise comparable. 328 pp. Englisch. Nº de ref. del artículo: 9780387907765
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 328. Nº de ref. del artículo: 263890534
Cantidad disponible: 4 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 489. Nº de ref. del artículo: C9780387907765
Cantidad disponible: Más de 20 disponibles