Unique blend of asymptotic theory and small sample practice through simulation experiments and data analysis.
Novel reproducing kernel Hilbert space methods for the analysis of smoothing splines and local polynomials. Leading to uniform error bounds and honest confidence bands for the mean function using smoothing splines
Exhaustive exposition of algorithms, including the Kalman filter, for the computation of smoothing splines of arbitrary order.
"Sinopsis" puede pertenecer a otra edición de este libro.
This is the second volume of a text on the theory and practice of maximum penalized likelihood estimation. It is intended for graduate students in statistics, operations research and applied mathematics, as well as for researchers and practitioners in the field. The present volume deals with nonparametric regression.
The emphasis in this volume is on smoothing splines of arbitrary order, but other estimators (kernels, local and global polynomials) pass review as well. Smoothing splines and local polynomials are studied in the context of reproducing kernel Hilbert spaces. The connection between smoothing splines and reproducing kernels is of course well-known. The new twist is that letting the innerproduct depend on the smoothing parameter opens up new possibilities. It leads to asymptotically equivalent reproducing kernel estimators (without qualifications), and thence, via uniform error bounds for kernel estimators, to uniform error bounds for smoothing splines and via strong approximations, to confidence bands for the unknown regression function.
The reason for studying smoothing splines of arbitrary order is that one wants to use them for data analysis. Regarding the actual computation, the usual scheme based on spline interpolation is useful for cubic smoothing splines only. For splines of arbitrary order, the Kalman filter is the most important method, the intricacies of which are explained in full. The authors also discuss simulation results for smoothing splines and local and global polynomials for a variety of test problems as well as results on confidence bands for the unknown regression function based on undersmoothed quintic smoothing splines with remarkably good coverage probabilities.
P.P.B. Eggermont and V.N. LaRiccia are with the Statistics Program of the Department of Food and Resource Economics in the College of Agriculture and Natural Resources at the University of Delaware, and the authors of Maximum Penalized Likelihood Estimation: Volume I: Density Estimation.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 20,38 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Zubal-Books, Since 1961, Cleveland, OH, Estados Unidos de America
Condición: New. 592 pp., hardcover, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Nº de ref. del artículo: ZB1314521
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Fully develops the theory of convex minimization problems to obtain convergence ratesIncludes simulation studies and analyses of classical data sets using fully automatic (data driven) proceduresMany topics appear for the first time in text. Nº de ref. del artículo: 5910291
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9780387402673_new
Cantidad disponible: Más de 20 disponibles
Librería: BennettBooksLtd, North Las Vegas, NV, Estados Unidos de America
hardcover. Condición: New. In shrink wrap. Looks like an interesting title! Nº de ref. del artículo: Q-0387402675
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Feb2215580172273
Cantidad disponible: Más de 20 disponibles