Artículos relacionados a Pattern Recognition and Machine Learning (Information...

Pattern Recognition and Machine Learning (Information Science and Statistics) - Tapa dura

 
9780387310732: Pattern Recognition and Machine Learning (Information Science and Statistics)

Sinopsis

Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation pro- gation. Similarly, new models based on kernels have had significant impact on both algorithms and applications. This new textbook reacts these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as wellas researchers and practitioners, and assumes no previous knowledge of pattern recognition or - chine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Chris Bishop is a Microsoft Distinguished Scientist and the Laboratory Director at Microsoft Research Cambridge. He is also Professor of Computer Science at the University of Edinburgh, and a Fellow of Darwin College, Cambridge. In 2004, he was elected Fellow of the Royal Academy of Engineering, and in 2007 he was elected Fellow of the Royal Society of Edinburgh. 
Chris obtained a BA in Physics from Oxford, and a PhD in Theoretical Physics from the University of Edinburgh, with a thesis on quantum field theory. He then joined Culham Laboratory where he worked on the theory of magnetically confined plasmas as part of the European controlled fusion programme.   

De la contraportada

The dramatic growth in practical applications for machine learning over the last ten years has been accompanied by many important developments in the underlying algorithms and techniques. For example, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic techniques. The practical applicability of Bayesian methods has been greatly enhanced by the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation, while new models based on kernels have had a significant impact on both algorithms and applications.

This completely new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher. The book is supported by a great deal of additional material, and the reader is encouraged to visit the book web site for the latest information.

Christopher M. Bishop is Deputy Director of Microsoft Research Cambridge, and holds a Chair inComputer Science at the University of Edinburgh. He is a Fellow of Darwin College Cambridge, a Fellow of the Royal Academy of Engineering, and a Fellow of the Royal Society of Edinburgh. His previous textbook "Neural Networks for Pattern Recognition" has been widely adopted.

Coming soon:

*For students, worked solutions to a subset of exercises available on a public web site (for exercises marked "www" in the text)

*For instructors, worked solutions to remaining exercises from the Springer web site

*Lecture slides to accompany each chapter

*Data sets available for download

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Aceptable
This is an ex-library book and...
Ver este artículo

EUR 16,52 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 6,01 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Pattern Recognition and Machine Learning (Information...

Imagen de archivo

Christopher M. Bishop
Publicado por Springer-Verlag New York Inc., 2006
ISBN 10: 0387310738 ISBN 13: 9780387310732
Antiguo o usado Tapa dura

Librería: Anybook.com, Lincoln, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1850grams, ISBN:9780387310732. Nº de ref. del artículo: 9880403

Contactar al vendedor

Comprar usado

EUR 63,18
Convertir moneda
Gastos de envío: EUR 16,52
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Christopher M. Bishop
Publicado por Springer, 2006
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuevo Tapa dura

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

HRD. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: S0-9780387310732

Contactar al vendedor

Comprar nuevo

EUR 81,47
Convertir moneda
Gastos de envío: EUR 6,01
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 15 disponibles

Añadir al carrito

Imagen de archivo

Bishop, Christopher M.
Publicado por Springer, 2006
ISBN 10: 0387310738 ISBN 13: 9780387310732
Antiguo o usado Tapa dura

Librería: Goodwill Books, Hillsboro, OR, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Good. Signs of wear and consistent use. Nº de ref. del artículo: 3IIK10005U95_ns

Contactar al vendedor

Comprar usado

EUR 24,68
Convertir moneda
Gastos de envío: EUR 64,42
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Bishop, Christopher M.
Publicado por Springer, 2006
ISBN 10: 0387310738 ISBN 13: 9780387310732
Antiguo o usado Tapa dura

Librería: Scissortail, Oklahoma City, OK, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: good. This is a pre-loved book that shows moderate signs of wear from previous reading. You may notice creases, edge wear, or a cracked spine, but it remains in solid, readable condition.Please note:-May include library or rental stickers, stamps, or markings.-Supplemental materials e.g., CDs, access codes, inserts are not guaranteed.-Box sets may not come with the original outer box. If it does, the box will not be in perfect condition. -Sourced from donation centers; authenticity not verified with publisher. Your satisfaction is our top priority! If you have any questions or concerns about your order, please donât hesitate to reach out. Thank you for shopping with us and supporting small businessâ"happy reading! Nº de ref. del artículo: STM.36N

Contactar al vendedor

Comprar usado

EUR 28,13
Convertir moneda
Gastos de envío: EUR 67,00
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Christopher M. Bishop
Publicado por Springer New York, 2006
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuevo Tapa dura

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. First text on pattern recognition to present the Bayesian viewpoint, one that has become increasing popular in the last five years. Presents approximate inference algorithms that permit fast approximate answers in situations where exact answers ar. Nº de ref. del artículo: 194599092

Contactar al vendedor

Comprar nuevo

EUR 79,71
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Christopher M Bishop
Publicado por Springer New York Aug 2006, 2006
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuevo Tapa dura

Librería: Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation pro- gation. Similarly, new models based on kernels have had significant impact on both algorithms and applications. This new textbook reacts these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as wellas researchers and practitioners, and assumes no previous knowledge of pattern recognition or - chine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory. 778 pp. Englisch. Nº de ref. del artículo: 9780387310732

Contactar al vendedor

Comprar nuevo

EUR 90,94
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Christopher M Bishop
Publicado por Springer New York Aug 2006, 2006
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuevo Tapa dura

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation pro- gation. Similarly, new models based on kernels have had significant impact on both algorithms and applications. This new textbook reacts these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as wellas researchers and practitioners, and assumes no previous knowledge of pattern recognition or - chine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory. 778 pp. Englisch. Nº de ref. del artículo: 9780387310732

Contactar al vendedor

Comprar nuevo

EUR 90,94
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Bishop, Christopher M.
Publicado por Springer, 2006
ISBN 10: 0387310738 ISBN 13: 9780387310732
Antiguo o usado Tapa dura

Librería: Textbooks_Source, Columbia, MO, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

hardcover. Condición: Good. Ships in a BOX from Central Missouri! May not include working access code. Will not include dust jacket. Has used sticker(s) and some writing or highlighting. UPS shipping for most packages, (Priority Mail for AK/HI/APO/PO Boxes). Nº de ref. del artículo: 000785971U

Contactar al vendedor

Comprar usado

EUR 41,21
Convertir moneda
Gastos de envío: EUR 64,42
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Christopher M Bishop
Publicado por Springer New York Aug 2006, 2006
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -The dramatic growth in practical applications for machine learning over the last ten years has been accompanied by many important developments in the underlying algorithms and techniques. For example, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic techniques. The practical applicability of Bayesian methods has been greatly enhanced by the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation, while new models based on kernels have had a significant impact on both algorithms and applications.Libri GmbH, Europaallee 1, 36244 Bad Hersfeld 778 pp. Englisch. Nº de ref. del artículo: 9780387310732

Contactar al vendedor

Comprar nuevo

EUR 90,94
Convertir moneda
Gastos de envío: EUR 16,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Christopher M Bishop
Publicado por Springer New York Aug 2006, 2006
ISBN 10: 0387310738 ISBN 13: 9780387310732
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware - Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation pro- gation. Similarly, new models based on kernels have had significant impact on both algorithms and applications. This new textbook reacts these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as wellas researchers and practitioners, and assumes no previous knowledge of pattern recognition or - chine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory. Nº de ref. del artículo: 9780387310732

Contactar al vendedor

Comprar nuevo

EUR 97,56
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 14 copia(s) de este libro

Ver todos los resultados de su búsqueda