Of the two primary approaches to the classic source separation problem, only one does not impose potentially unreasonable model and likelihood constraints: the Bayesian statistical approach. Bayesian methods incorporate the available information regarding the model parameters and not only allow estimation of the sources and mixing coefficients, but also allow inferences to be drawn from them. Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing offers a thorough, self-contained treatment of the source separation problem. After an introduction to the problem using the "cocktail-party" analogy, Part I provides the statistical background needed for the Bayesian source separation model. Part II considers the instantaneous constant mixing models, where the observed vectors and unobserved sources are independent over time but allowed to be dependent within each vector. Part III details more general models in which sources can be delayed, mixing coefficients can change over time, and observation and source vectors can be correlated over time. For each model discussed, the author gives two distinct ways to estimate the parameters. Real-world source separation problems, encountered in disciplines from engineering and computer science to economics and image processing, are more difficult than they appear. This book furnishes the fundamental statistical material and up-to-date research results that enable readers to understand and apply Bayesian methods to help solve the many "cocktail party" problems they may confront in practice.
"Sinopsis" puede pertenecer a otra edición de este libro.
Daniel B. Rowe holds a joint appointment as an assistant professor of Biophysics and Biostatistics at the Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 17,45 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Of the two primary approaches to the classic source separation problem, only one does not impose potentially unreasonable model and likelihood constraints: the Bayesian statistical approach. Bayesian methods incorporate the available information regarding the model parameters and not only allow estimation of the sources and mixing coefficients, but also allow inferences to be drawn from them.Multivariate Bayesian Statistics: Models for Source Separation and Signal Unmixing offers a thorough, self-contained treatment of the source separation problem. After an introduction to the problem using the 'cocktail-party' analogy, Part I provides the statistical background needed for the Bayesian source separation model. Part II considers the instantaneous constant mixing models, where the observed vectors and unobserved sources are independent over time but allowed to be dependent within each vector. Part III details more general models in which sources can be delayed, mixing coefficients can change over time, and observation and source vectors can be correlated over time. For each model discussed, the author gives two distinct ways to estimate the parameters.Real-world source separation problems, encountered in disciplines from engineering and computer science to economics and image processing, are more difficult than they appear. This book furnishes the fundamental statistical material and up-to-date research results that enable readers to understand and apply Bayesian methods to help solve the many 'cocktail party' problems they may confront in practice. 350 pp. Englisch. Nº de ref. del artículo: 9780367454661
Cantidad disponible: 2 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Paperback / softback. Condición: New. New copy - Usually dispatched within 4 working days. 185. Nº de ref. del artículo: B9780367454661
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 352 pages. 9.21x6.14x0.79 inches. In Stock. Nº de ref. del artículo: __0367454661
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 352. Nº de ref. del artículo: 380159410
Cantidad disponible: 3 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 38723306
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 38723306
Cantidad disponible: 10 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Daniel B. Rowe holds a joint appointment as an assistant professor of Biophysics and Biostatistics at the Medical College of Wisconsin, Milwaukee, Wisconsin, USA.Of the two primary approaches to the classic source separation problem, only one doe. Nº de ref. del artículo: 594583341
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 38723306-n
Cantidad disponible: 10 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 38723306-n
Cantidad disponible: 10 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 352. Nº de ref. del artículo: 26383744621
Cantidad disponible: 3 disponibles