Singular Spectrum Analysis: A New Tool in Time Series Analysis (Language of Science) - Tapa dura

Tsonis, A.A.; Elsner, J.B.

 
9780306454721: Singular Spectrum Analysis: A New Tool in Time Series Analysis (Language of Science)

Sinopsis

The term singular spectrum comes from the spectral (eigenvalue) decomposition of a matrix A into its set (spectrum) of eigenvalues. These eigenvalues, A, are the numbers that make the matrix A -AI singular. The term singular spectrum analysis· is unfortunate since the traditional eigenvalue decomposition involving multivariate data is also an analysis of the singular spectrum. More properly, singular spectrum analysis (SSA) should be called the analysis of time series using the singular spectrum. Spectral decomposition of matrices is fundamental to much the­ ory of linear algebra and it has many applications to problems in the natural and related sciences. Its widespread use as a tool for time­ series analysis is fairly recent, however, emerging to a large extent from applications of dynamical systems theory (sometimes called chaos theory). SSA was introduced into chaos theory by Fraedrich (1986) and Broomhead and King (l986a). Prior to this, SSA was used in biological oceanography by Colebrook (1978). In the digi­ tal signal processing community, the approach is also known as the Karhunen-Loeve (K-L) expansion (Pike et aI., 1984). Like other techniques based on spectral decomposition, SSA is attractive in that it holds a promise for a reduction in the dimen- • Singular spectrum analysis is sometimes called singular systems analysis or singular spectrum approach. vii viii Preface sionality. This reduction in dimensionality is often accompanied by a simpler explanation of the underlying physics.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

The term singular spectrum comes from the spectral (eigenvalue) decomposition of a matrix A into its set (spectrum) of eigenvalues. These eigenvalues, A, are the numbers that make the matrix A -AI singular. The term singular spectrum analysis· is unfortunate since the traditional eigenvalue decomposition involving multivariate data is also an analysis of the singular spectrum. More properly, singular spectrum analysis (SSA) should be called the analysis of time series using the singular spectrum. Spectral decomposition of matrices is fundamental to much the­ ory of linear algebra and it has many applications to problems in the natural and related sciences. Its widespread use as a tool for time­ series analysis is fairly recent, however, emerging to a large extent from applications of dynamical systems theory (sometimes called chaos theory). SSA was introduced into chaos theory by Fraedrich (1986) and Broomhead and King (l986a). Prior to this, SSA was used in biological oceanography by Colebrook (1978). In the digi­ tal signal processing community, the approach is also known as the Karhunen-Loeve (K-L) expansion (Pike et aI., 1984). Like other techniques based on spectral decomposition, SSA is attractive in that it holds a promise for a reduction in the dimen- · Singular spectrum analysis is sometimes called singular systems analysis or singular spectrum approach. vii viii Preface sionality. This reduction in dimensionality is often accompanied by a simpler explanation of the underlying physics.

Reseña del editor

This original new text provides an easily accessible introduction to this important new topic in time series analysis. The authors emphasize examples over theoretical explanations and the need for proper and careful statistical tests in the context of data exploration. The book's focus is on the application of the method in signal detection, filtering, and prediction. Instructors and students will appreciate the step-by-step presentation of underlying ideas.

"Sobre este título" puede pertenecer a otra edición de este libro.

Otras ediciones populares con el mismo título

9781441932662: Singular Spectrum Analysis: A New Tool in Time Series Analysis

Edición Destacada

ISBN 10:  1441932666 ISBN 13:  9781441932662
Editorial: Springer, 2010
Tapa blanda