Learning in Graphical Models (Adaptive Computation and Machine Learning)

3,83 valoración promedio
( 6 valoraciones por Goodreads )
 
9780262600323: Learning in Graphical Models (Adaptive Computation and Machine Learning)

Graphical models, a marriage between probability theory and graph theory, provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering -- uncertainty and complexity. In particular, they play an increasingly important role in the design and analysis of machine learning algorithms. Fundamental to the idea of a graphical model is the notion of modularity: a complex system is built by combining simpler parts. Probability theory serves as the glue whereby the parts are combined, ensuring that the system as a whole is consistent and providing ways to interface models to data. Graph theory provides both an intuitively appealing interface by which humans can model highly interacting sets of variables and a data structure that lends itself naturally to the design of efficient general-purpose algorithms.

This book presents an in-depth exploration of issues related to learning within the graphical model formalism. Four chapters are tutorial chapters -- Robert Cowell on Inference for Bayesian Networks, David MacKay on Monte Carlo Methods, Michael I. Jordan et al. on Variational Methods, and David Heckerman on Learning with Bayesian Networks. The remaining chapters cover a wide range of topics of current research interest.

"Sinopsis" puede pertenecer a otra edición de este libro.

About the Author:

Michael I. Jordan is Professor of Computer Science and of Statistics at the University of California, Berkeley, and recipient of the ACM/AAAI Allen Newell Award.

Review:

This book deals with an area that is central to modern statistical science and which has also attracted the interest of outstanding researchers beyond the statistical mainstream, from computer science, and neural computing. The book gives a vital and timely overview of current work at this interface, described by contributors representing the complete spectrum of backgrounds.

(Michael Titterington, Professor of Statistics, University of Glasgow)

Learning in Graphical Models is the product of a mutually exciting interaction between ideas, insights, and techniques drawn from the fields of statistics, computer science, and physics. With its authoritative tutorial papers and specialist articles by leading researchers, this collection provides an indispensable guide to a rapidly expanding subject.

(A.P. Dawid, Department of Statistical Science, University of College London)

The state of the art presented by the experts in the field.

(Ross D. Shachter, Department of Engineering-Economic Systems and Operations Research, Stanford University)

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo Ver libro

Gastos de envío: EUR 10,21
De Reino Unido a Estados Unidos de America

Destinos, gastos y plazos de envío

Añadir al carrito

Los mejores resultados en AbeBooks

1.

Michael I. Jordan
Editorial: MIT Press (1999)
ISBN 10: 0262600323 ISBN 13: 9780262600323
Nuevos Cantidad: 4
Librería
Books2Anywhere
(Fairford, GLOS, Reino Unido)
Valoración
[?]

Descripción MIT Press, 1999. PAP. Estado de conservación: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Nº de ref. de la librería WM-9780262600323

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 48,21
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 10,21
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Jordan, Michael I.
ISBN 10: 0262600323 ISBN 13: 9780262600323
Nuevos Cantidad: 8
Librería
Paperbackshop-US
(Wood Dale, IL, Estados Unidos de America)
Valoración
[?]

Descripción 1999. PAP. Estado de conservación: New. New Book. Shipped from US within 10 to 14 business days. Established seller since 2000. Nº de ref. de la librería TM-9780262600323

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 67,71
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,40
A Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Michael I. Jordan (editor)
Editorial: The MIT Press 1999-01-20, Cambridge, Mass. |London (1999)
ISBN 10: 0262600323 ISBN 13: 9780262600323
Nuevos paperback Cantidad: 1
Librería
Blackwell's
(Oxford, OX, Reino Unido)
Valoración
[?]

Descripción The MIT Press 1999-01-20, Cambridge, Mass. |London, 1999. paperback. Estado de conservación: New. Nº de ref. de la librería 9780262600323

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 65,92
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,80
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Editorial: MIT Press Ltd, United States (1999)
ISBN 10: 0262600323 ISBN 13: 9780262600323
Nuevos Paperback Cantidad: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd, United States, 1999. Paperback. Estado de conservación: New. Language: English . Brand New Book. Graphical models, a marriage between probability theory and graph theory, provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering -- uncertainty and complexity. In particular, they play an increasingly important role in the design and analysis of machine learning algorithms. Fundamental to the idea of a graphical model is the notion of modularity: a complex system is built by combining simpler parts. Probability theory serves as the glue whereby the parts are combined, ensuring that the system as a whole is consistent and providing ways to interface models to data. Graph theory provides both an intuitively appealing interface by which humans can model highly interacting sets of variables and a data structure that lends itself naturally to the design of efficient general-purpose algorithms.This book presents an in-depth exploration of issues related to learning within the graphical model formalism. Four chapters are tutorial chapters -- Robert Cowell on Inference for Bayesian Networks, David MacKay on Monte Carlo Methods, Michael I. Jordan et al. on Variational Methods, and David Heckerman on Learning with Bayesian Networks. The remaining chapters cover a wide range of topics of current research interest. Nº de ref. de la librería AAH9780262600323

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 73,51
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Editorial: MIT Press Ltd, United States (1999)
ISBN 10: 0262600323 ISBN 13: 9780262600323
Nuevos Paperback Cantidad: 1
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd, United States, 1999. Paperback. Estado de conservación: New. Language: English . Brand New Book. Graphical models, a marriage between probability theory and graph theory, provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering -- uncertainty and complexity. In particular, they play an increasingly important role in the design and analysis of machine learning algorithms. Fundamental to the idea of a graphical model is the notion of modularity: a complex system is built by combining simpler parts. Probability theory serves as the glue whereby the parts are combined, ensuring that the system as a whole is consistent and providing ways to interface models to data. Graph theory provides both an intuitively appealing interface by which humans can model highly interacting sets of variables and a data structure that lends itself naturally to the design of efficient general-purpose algorithms.This book presents an in-depth exploration of issues related to learning within the graphical model formalism. Four chapters are tutorial chapters -- Robert Cowell on Inference for Bayesian Networks, David MacKay on Monte Carlo Methods, Michael I. Jordan et al. on Variational Methods, and David Heckerman on Learning with Bayesian Networks. The remaining chapters cover a wide range of topics of current research interest. Nº de ref. de la librería AAH9780262600323

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 74,06
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Michael I. Jordan (Editor)
Editorial: A Bradford Book (1998)
ISBN 10: 0262600323 ISBN 13: 9780262600323
Nuevos Paperback Cantidad: 1
Librería
Ergodebooks
(RICHMOND, TX, Estados Unidos de America)
Valoración
[?]

Descripción A Bradford Book, 1998. Paperback. Estado de conservación: New. Nº de ref. de la librería DADAX0262600323

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 71,69
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 4,25
A Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Michael Jordan
Editorial: MIT Press
ISBN 10: 0262600323 ISBN 13: 9780262600323
Nuevos Paperback Cantidad: 2
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción MIT Press. Paperback. Estado de conservación: New. New copy - Usually dispatched within 2 working days. Nº de ref. de la librería B9780262600323

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 70,85
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 7,87
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Editorial: A Bradford Book (1998)
ISBN 10: 0262600323 ISBN 13: 9780262600323
Nuevos Paperback Cantidad: 2
Librería
Murray Media
(North Miami Beach, FL, Estados Unidos de America)
Valoración
[?]

Descripción A Bradford Book, 1998. Paperback. Estado de conservación: New. Never used!. Nº de ref. de la librería P110262600323

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 79,32
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 1,69
A Estados Unidos de America
Destinos, gastos y plazos de envío

9.

JORDAN
ISBN 10: 0262600323 ISBN 13: 9780262600323
Nuevos Paperback Cantidad: 1
Librería
Herb Tandree Philosophy Books
(Stroud, GLOS, Reino Unido)
Valoración
[?]

Descripción 1999. Paperback. Estado de conservación: NEW. 9780262600323 This listing is a new book, a title currently in-print which we order directly and immediately from the publisher. For all enquiries, please contact Herb Tandree Philosophy Books directly - customer service is our primary goal. Nº de ref. de la librería HTANDREE01141066

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 78,20
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 9,07
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

10.

Editorial: MIT Press Ltd, United States (1999)
ISBN 10: 0262600323 ISBN 13: 9780262600323
Nuevos Paperback Cantidad: 1
Librería
Book Depository hard to find
(London, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd, United States, 1999. Paperback. Estado de conservación: New. Language: English . This book usually ship within 10-15 business days and we will endeavor to dispatch orders quicker than this where possible. Brand New Book. Graphical models, a marriage between probability theory and graph theory, provide a natural tool for dealing with two problems that occur throughout applied mathematics and engineering -- uncertainty and complexity. In particular, they play an increasingly important role in the design and analysis of machine learning algorithms. Fundamental to the idea of a graphical model is the notion of modularity: a complex system is built by combining simpler parts. Probability theory serves as the glue whereby the parts are combined, ensuring that the system as a whole is consistent and providing ways to interface models to data. Graph theory provides both an intuitively appealing interface by which humans can model highly interacting sets of variables and a data structure that lends itself naturally to the design of efficient general-purpose algorithms.This book presents an in-depth exploration of issues related to learning within the graphical model formalism. Four chapters are tutorial chapters -- Robert Cowell on Inference for Bayesian Networks, David MacKay on Monte Carlo Methods, Michael I. Jordan et al. on Variational Methods, and David Heckerman on Learning with Bayesian Networks. The remaining chapters cover a wide range of topics of current research interest. Nº de ref. de la librería BTE9780262600323

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 90,16
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda