These original contributions converge on an exciting and fruitful intersection of three historically distinct areas of learning research: computational learning theory, neural networks, and symbolic machine learning. Bridging theory and practice, computer science and psychology, they consider general issues in learning systems that could provide constraints for theory and at the same time interpret theoretical results in the context of experiments with actual learning systems.
In all, nineteen chapters address questions such as, What is a natural system? How should learning systems gain from prior knowledge? If prior knowledge is important, how can we quantify how important? What makes a learning problem hard? How are neural networks and symbolic machine learning approaches similar? Is there a fundamental difference in the kind of task a neural network can easily solve as opposed to those a symbolic algorithm can easily solve?
Stephen J. Hanson heads the Learning Systems Department at Siemens Corporate Research and is a Visiting Member of the Research Staff and Research Collaborator at the Cognitive Science Laboratory at Princeton University. George A. Drastal is Senior Research Scientist at Siemens Corporate Research. Ronald J. Rivest is Professor of Computer Science and Associate Director of the Laboratory for Computer Science at the Massachusetts Institute of Technology.
"Sinopsis" puede pertenecer a otra edición de este libro.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 8,54 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 25,57 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: G. & J. CHESTERS, TAMWORTH, Reino Unido
Soft cover. Condición: Very Good. 1st Edition. 566 pages, a VG paperback (does have a small crease across top corner of the back cover) [0262581264]. Nº de ref. del artículo: 74398
Cantidad disponible: 1 disponibles
Librería: Kloof Booksellers & Scientia Verlag, Amsterdam, Holanda
Condición: as new. Cambridge, MA: The MIT Press, 1994. Paperback. 500 pp.- These original contributions converge on an exciting and fruitful intersection of three historically distinct areas of learning research: computational learning theory, neural networks, and symbolic machine learning. Bridging theory and practice, computer science and psychology, they consider general issues in learning systems that could provide constraints for theory and at the same time interpret theoretical results in the context of experiments with actual learning systems. In all, nineteen chapters address questions such as, What is a natural system? How should learning systems gain from prior knowledge? If prior knowledge is important, how can we quantify how important? What makes a learning problem hard? How are neural networks and symbolic machine learning approaches similar? Is there a fundamental difference in the kind of task a neural network can easily solve as opposed to those a symbolic algorithm can easily solve? English text. Condition : as new. Condition : as new copy. ISBN 9780262581264. Keywords : , Nº de ref. del artículo: 250676
Cantidad disponible: 1 disponibles
Librería: Ammareal, Morangis, Francia
Softcover. Condición: Très bon. Ancien livre de bibliothèque. Edition 1994. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Very good. Former library book. Edition 1994. Ammareal gives back up to 15% of this item's net price to charity organizations. Nº de ref. del artículo: F-924-466
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 577 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 41380194/202
Cantidad disponible: 1 disponibles
Librería: BOOKWEST, Phoenix, AZ, Estados Unidos de America
Soft cover. Condición: New. US SELLER SHIPS FAST FROM USA. Nº de ref. del artículo: MA-144A1-0262581264
Cantidad disponible: 1 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
paperback. Condición: Very Good. Very Good. book. Nº de ref. del artículo: ERICA82902625812645
Cantidad disponible: 1 disponibles