Boosting: Foundations and Algorithms (Adaptive Computation and Machine Learning series)

3,88 valoración promedio
( 17 valoraciones por Goodreads )
 
9780262526036: Boosting: Foundations and Algorithms (Adaptive Computation and Machine Learning series)

Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate "rules of thumb." A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.

This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.

"Sinopsis" puede pertenecer a otra edición de este libro.

About the Author:

Robert E. Schapire is Professor of Computer Science at Princeton University. Yoav Freund is Professor of Computer Science at the University of California, San Diego. For their work on boosting, Freund and Schapire received both the Gödel Prize in 2003 and the Kanellakis Theory and Practice Award in 2004.

Review:

Robert Schapire and Yoav Freund made a huge impact in machine and statistical learning with their invention of boosting, which has survived the test of time. There have been lively discussions about alternative explanations of why it works so well, and the jury is still out. This well-balanced book from the 'masters' covers boosting from all points of view, and gives easy access to the wealth of research that this field has produced.

(Trevor Hastie, Statistics Department, Stanford University)

Boosting has provided a platform for thinking about and designing machine learning algorithms for over 20 years. The simple and elegant idea behind boosting is a 'Mirror of Erised' that researchers view from many different perspectives. This book beautifully ties together these views, using the same limpid style found in Robert Schapire and Yoav Freund's original research papers. It's an important resource for machine learning research.

(John Lafferty, University of Chicago and Carnegie Mellon University)

An outstanding text, which provides an authoritative, self-contained, broadly accessible and very readable treatment of boosting methods, a widely applied family of machine learning algorithms pioneered by the authors. It nicely covers the spectrum from theory through methodology to applications.

(Peter Bartlett, University of California, Berkeley)

Boosting is an amazing machine learning algorithm of 'intelligence' with much success in practice. It allows a weak learner to adapt to the data at hand and become 'strong'; it seamlessly integrates statistical estimation and computation. In this book, Robert Schapire and Yoav Freund, two inventors of the field, present multiple, fascinating views of boosting to explain why and how it works.

(Bin Yu, University of California, Berkeley)

This excellent book is a mind-stretcher that should be read and reread, even by nonspecialists.

(Computing Reviews)

Boosting is, quite simply, one of the best-written books I've read on machine learning...

(The Bactra Review)

For those who wish to work in the area, it is a clear and insightful view of the subject that deserves a place in the canon of machine learning and on the shelves of those who study it.

(Giles Hooker Journal of the American Statistical Association)

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

Robert E. Schapire; Yoav Freund
ISBN 10: 0262526034 ISBN 13: 9780262526036
Nuevos Cantidad: 5
Librería
GreatBookPrices
(Columbia, MD, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Nº de ref. de la librería 20281694-n

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 22,23
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 2,27
A Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Robert E. Schapire
ISBN 10: 0262526034 ISBN 13: 9780262526036
Nuevos Cantidad: 3
Librería
Book Park
(Southfield, MI, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Brand New Book. Nº de ref. de la librería 0262526034BYR

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 24,56
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Robert E. Schapire, Yoav Freund
Editorial: MIT Press Ltd, United States (2014)
ISBN 10: 0262526034 ISBN 13: 9780262526036
Nuevos Paperback Cantidad: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd, United States, 2014. Paperback. Estado de conservación: New. Language: English . Brand New Book. Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate rules of thumb. A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well.The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout. Nº de ref. de la librería AAU9780262526036

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 27,44
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Robert E. Schapire, Yoav Freund
Editorial: MIT Press Ltd, United States (2014)
ISBN 10: 0262526034 ISBN 13: 9780262526036
Nuevos Paperback Cantidad: 1
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd, United States, 2014. Paperback. Estado de conservación: New. Language: English . Brand New Book. Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate rules of thumb. A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical.This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout. Nº de ref. de la librería AAU9780262526036

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 27,44
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Schapire, Robert E., Freund, Yoav
Editorial: The MIT Press (2014)
ISBN 10: 0262526034 ISBN 13: 9780262526036
Nuevos Tapa blanda Cantidad: 4
Librería
Valoración
[?]

Descripción The MIT Press, 2014. Estado de conservación: New. Series: Adaptive Computation and Machine Learning Series. Num Pages: 544 pages, 77 b&w illus. BIC Classification: UMB; UYA; UYQM. Category: (P) Professional & Vocational. Dimension: 181 x 230 x 24. Weight in Grams: 854. . 2014. Paperback. . . . . . Nº de ref. de la librería V9780262526036

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 28,54
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Irlanda a Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Robert E. Schapire, Yoav Freund
Editorial: MIT Press 2014-02-11 (2014)
ISBN 10: 0262526034 ISBN 13: 9780262526036
Nuevos Paperback Cantidad: 3
Librería
Chiron Media
(Wallingford, Reino Unido)
Valoración
[?]

Descripción MIT Press 2014-02-11, 2014. Paperback. Estado de conservación: New. Nº de ref. de la librería NU-GRD-05071692

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 25,22
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,35
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Robert E. Schapire, Yoav Freund
Editorial: MIT Press 2014-02-11, Cambridge, Mass. (2014)
ISBN 10: 0262526034 ISBN 13: 9780262526036
Nuevos paperback Cantidad: 1
Librería
Blackwell's
(Oxford, OX, Reino Unido)
Valoración
[?]

Descripción MIT Press 2014-02-11, Cambridge, Mass., 2014. paperback. Estado de conservación: New. Nº de ref. de la librería 9780262526036

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 25,35
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,36
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Robert E. Schapire
ISBN 10: 0262526034 ISBN 13: 9780262526036
Nuevos Cantidad: 2
Librería
BooksForStudent
(West Bloomfield, MI, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Brand New Book In Mint condition. Shipping with Trackable Method. No APO/FPO Addresses Please. Nº de ref. de la librería 9780262526036NHS

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 29,56
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

9.

Schapire, Robert E., Freund, Yoav
Editorial: The MIT Press
ISBN 10: 0262526034 ISBN 13: 9780262526036
Nuevos Tapa blanda Cantidad: 4
Librería
Kennys Bookstore
(Olney, MD, Estados Unidos de America)
Valoración
[?]

Descripción The MIT Press. Estado de conservación: New. Series: Adaptive Computation and Machine Learning Series. Num Pages: 544 pages, 77 b&w illus. BIC Classification: UMB; UYA; UYQM. Category: (P) Professional & Vocational. Dimension: 181 x 230 x 24. Weight in Grams: 854. . 2014. Paperback. . . . . Books ship from the US and Ireland. Nº de ref. de la librería V9780262526036

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 29,80
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

10.

Robert E. Schapire
Editorial: MIT Press (2014)
ISBN 10: 0262526034 ISBN 13: 9780262526036
Nuevos Cantidad: 4
Librería
Books2Anywhere
(Fairford, GLOS, Reino Unido)
Valoración
[?]

Descripción MIT Press, 2014. PAP. Estado de conservación: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Nº de ref. de la librería BB-9780262526036

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 20,88
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 10,08
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda