Reliable Reasoning: Induction and Statistical Learning Theory (Jean Nicod Lectures)

2,89 valoración promedio
( 9 valoraciones por Goodreads )
 
9780262517348: Reliable Reasoning: Induction and Statistical Learning Theory (Jean Nicod Lectures)

In Reliable Reasoning, Gilbert Harman and Sanjeev Kulkarni -- a philosopher and an engineer -- argue that philosophy and cognitive science can benefit from statistical learning theory (SLT), the theory that lies behind recent advances in machine learning. The philosophical problem of induction, for example, is in part about the reliability of inductive reasoning, where the reliability of a method is measured by its statistically expected percentage of errors -- a central topic in SLT.

After discussing philosophical attempts to evade the problem of induction, Harman and Kulkarni provide an admirably clear account of the basic framework of SLT and its implications for inductive reasoning. They explain the Vapnik-Chervonenkis (VC) dimension of a set of hypotheses and distinguish two kinds of inductive reasoning. The authors discuss various topics in machine learning, including nearest-neighbor methods, neural networks, and support vector machines. Finally, they describe transductive reasoning and suggest possible new models of human reasoning suggested by developments in SLT.

"Sinopsis" puede pertenecer a otra edición de este libro.

About the Author:

Gilbert Harman and Sanjeev Kulkarni are coauthors of An Elementary Introduction to Statistical Learning Theory. Harman is James S. McDonnell Distinguished University Professor of Philosophy at Princeton. Kulkarni is Professor of Electrical Engineering, an associated member of the Department of Philosophy, and Master of Butler College at Princeton University.

Review:

In their interesting and stimulating book Reliable Reasoning, Harman, a philosopher, and Kulkarni, an information scientist, illuminate the philosophical issues related to inductive reasoning by studying it in terms of the mathematics of probabilistic learning. One of the great virtues of this approach is that the inductive inference made through learning can survive changes in the probabilistic modeling assumptions. I find that the authors have made a convincing and persuasive case for rigorously studying the philosophical issues related to inductive inference using recent ideas from the science of artificial intelligence.

(Sanjoy K. Mitter, Professor of Electrical Engineering, MIT)

This thoroughly enjoyable little book on learning theory reminds me of many classics in the field, such as Nilsson's Learning Machines or Minksy and Papert's Perceptrons: It is both a concise and timely tutorial 'projecting' the last decade of complex learning issues into simple and comprehensible forms and a vehicle for exciting new links among cognitive science, philosophy, and computational complexity.

(Stephen J. Hanson, Department of Psychology, Rutgers University)

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

Kulkarni, Sanjeev
Editorial: MIT Press
ISBN 10: 0262517345 ISBN 13: 9780262517348
Nuevos Cantidad: > 20
Librería
INDOO
(Avenel, NJ, Estados Unidos de America)
Valoración
[?]

Descripción MIT Press. Estado de conservación: New. Brand New. Nº de ref. de la librería 0262517345

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 14,81
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,01
A Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Gilbert Harman, Sanjeev Kulkarni
Editorial: MIT Press Ltd, United States (2012)
ISBN 10: 0262517345 ISBN 13: 9780262517348
Nuevos Paperback Cantidad: 1
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd, United States, 2012. Paperback. Estado de conservación: New. Language: English . Brand New Book. In Reliable Reasoning, Gilbert Harman and Sanjeev Kulkarni -- a philosopher and an engineer -- argue that philosophy and cognitive science can benefit from statistical learning theory (SLT), the theory that lies behind recent advances in machine learning. The philosophical problem of induction, for example, is in part about the reliability of inductive reasoning, where the reliability of a method is measured by its statistically expected percentage of errors -- a central topic in SLT.After discussing philosophical attempts to evade the problem of induction, Harman and Kulkarni provide an admirably clear account of the basic framework of SLT and its implications for inductive reasoning. They explain the Vapnik-Chervonenkis (VC) dimension of a set of hypotheses and distinguish two kinds of inductive reasoning. The authors discuss various topics in machine learning, including nearest-neighbor methods, neural networks, and support vector machines. Finally, they describe transductive reasoning and suggest possible new models of human reasoning suggested by developments in SLT. Nº de ref. de la librería AAH9780262517348

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 18,83
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Gilbert Harman, Sanjeev Kulkarni
Editorial: MIT Press Ltd, United States (2012)
ISBN 10: 0262517345 ISBN 13: 9780262517348
Nuevos Paperback Cantidad: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd, United States, 2012. Paperback. Estado de conservación: New. Language: English . Brand New Book. In Reliable Reasoning, Gilbert Harman and Sanjeev Kulkarni -- a philosopher and an engineer -- argue that philosophy and cognitive science can benefit from statistical learning theory (SLT), the theory that lies behind recent advances in machine learning. The philosophical problem of induction, for example, is in part about the reliability of inductive reasoning, where the reliability of a method is measured by its statistically expected percentage of errors -- a central topic in SLT.After discussing philosophical attempts to evade the problem of induction, Harman and Kulkarni provide an admirably clear account of the basic framework of SLT and its implications for inductive reasoning. They explain the Vapnik-Chervonenkis (VC) dimension of a set of hypotheses and distinguish two kinds of inductive reasoning. The authors discuss various topics in machine learning, including nearest-neighbor methods, neural networks, and support vector machines. Finally, they describe transductive reasoning and suggest possible new models of human reasoning suggested by developments in SLT. Nº de ref. de la librería AAH9780262517348

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 18,83
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Harman, Gilbert
ISBN 10: 0262517345 ISBN 13: 9780262517348
Nuevos Cantidad: > 20
Librería
Paperbackshop-US
(Wood Dale, IL, Estados Unidos de America)
Valoración
[?]

Descripción 2012. PAP. Estado de conservación: New. New Book. Shipped from US within 10 to 14 business days. Established seller since 2000. Nº de ref. de la librería TM-9780262517348

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 16,20
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,43
A Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Gilbert Harman; Sanjeev Kulkarni
Editorial: A Bradford Book (2012)
ISBN 10: 0262517345 ISBN 13: 9780262517348
Nuevos Paperback Cantidad: 1
Librería
Irish Booksellers
(Rumford, ME, Estados Unidos de America)
Valoración
[?]

Descripción A Bradford Book, 2012. Paperback. Estado de conservación: New. book. Nº de ref. de la librería 0262517345

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 19,92
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Gilbert Harman, Sanjeev Kulkarni
Editorial: MIT Press Ltd, United States (2012)
ISBN 10: 0262517345 ISBN 13: 9780262517348
Nuevos Paperback Cantidad: 10
Librería
Book Depository hard to find
(London, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd, United States, 2012. Paperback. Estado de conservación: New. Language: English . This book usually ship within 10-15 business days and we will endeavor to dispatch orders quicker than this where possible. Brand New Book. In Reliable Reasoning, Gilbert Harman and Sanjeev Kulkarni -- a philosopher and an engineer -- argue that philosophy and cognitive science can benefit from statistical learning theory (SLT), the theory that lies behind recent advances in machine learning. The philosophical problem of induction, for example, is in part about the reliability of inductive reasoning, where the reliability of a method is measured by its statistically expected percentage of errors -- a central topic in SLT.After discussing philosophical attempts to evade the problem of induction, Harman and Kulkarni provide an admirably clear account of the basic framework of SLT and its implications for inductive reasoning. They explain the Vapnik-Chervonenkis (VC) dimension of a set of hypotheses and distinguish two kinds of inductive reasoning. The authors discuss various topics in machine learning, including nearest-neighbor methods, neural networks, and support vector machines. Finally, they describe transductive reasoning and suggest possible new models of human reasoning suggested by developments in SLT. Nº de ref. de la librería BTE9780262517348

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 20,39
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Gilbert Harman; Sanjeev Kulkarni
ISBN 10: 0262517345 ISBN 13: 9780262517348
Nuevos Cantidad: 2
Librería
BWB
(Valley Stream, NY, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Depending on your location, this item may ship from the US or UK. Nº de ref. de la librería 97802625173480000000

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 21,60
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Gilbert Harman
Editorial: MIT Press (2012)
ISBN 10: 0262517345 ISBN 13: 9780262517348
Nuevos Cantidad: 2
Librería
Books2Anywhere
(Fairford, GLOS, Reino Unido)
Valoración
[?]

Descripción MIT Press, 2012. PAP. Estado de conservación: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Nº de ref. de la librería WM-9780262517348

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 12,71
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 10,07
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

9.

Gilbert Harman, Sanjeev Kulkarni
Editorial: MIT Press Ltd
ISBN 10: 0262517345 ISBN 13: 9780262517348
Nuevos Paperback Cantidad: 2
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd. Paperback. Estado de conservación: new. BRAND NEW, Reliable Reasoning: Induction and Statistical Learning Theory, Gilbert Harman, Sanjeev Kulkarni, In Reliable Reasoning, Gilbert Harman and Sanjeev Kulkarni -- a philosopher and an engineer -- argue that philosophy and cognitive science can benefit from statistical learning theory (SLT), the theory that lies behind recent advances in machine learning. The philosophical problem of induction, for example, is in part about the reliability of inductive reasoning, where the reliability of a method is measured by its statistically expected percentage of errors -- a central topic in SLT. After discussing philosophical attempts to evade the problem of induction, Harman and Kulkarni provide an admirably clear account of the basic framework of SLT and its implications for inductive reasoning. They explain the Vapnik-Chervonenkis (VC) dimension of a set of hypotheses and distinguish two kinds of inductive reasoning. The authors discuss various topics in machine learning, including nearest-neighbor methods, neural networks, and support vector machines. Finally, they describe transductive reasoning and suggest possible new models of human reasoning suggested by developments in SLT. Nº de ref. de la librería B9780262517348

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 17,37
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 7,77
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

10.

Gilbert Harman, Sanjeev Kulkarni
Editorial: A Bradford Book (2012)
ISBN 10: 0262517345 ISBN 13: 9780262517348
Nuevos Paperback Cantidad: 1
Librería
Ergodebooks
(RICHMOND, TX, Estados Unidos de America)
Valoración
[?]

Descripción A Bradford Book, 2012. Paperback. Estado de conservación: New. Nº de ref. de la librería DADAX0262517345

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 22,21
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,43
A Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda