Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning Series)

4,22 valoración promedio
( 40 valoraciones por GoodReads )
 
9780262182539: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning Series)
Review:

From the Publisher:

Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo Ver libro

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America

Destinos, gastos y plazos de envío

Añadir al carrito

Los mejores resultados en AbeBooks

1.

Rasmussen, Carl Edward; Williams, Christopher K. I.
Editorial: MIT Press Ltd, United States (2006)
ISBN 10: 026218253X ISBN 13: 9780262182539
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd, United States, 2006. Hardback. Estado de conservación: New. 254 x 206 mm. Language: English . Brand New Book. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes. Nº de ref. de la librería AAU9780262182539

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 34,46
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Rasmussen, Carl Edward; Williams, Christopher K. I.
Editorial: MIT Press Ltd (2005)
ISBN 10: 026218253X ISBN 13: 9780262182539
Nuevos Tapa dura Cantidad: 2
Librería
Valoración
[?]

Descripción MIT Press Ltd, 2005. Estado de conservación: New. 2005. Hardcover. A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Series: Adaptive Computation and Machine Learning Series. Num Pages: 266 pages, Illustrations. BIC Classification: PBW; UYQM. Category: (P) Professional & Vocational. Dimension: 261 x 212 x 18. Weight in Grams: 720. . . . . . . Nº de ref. de la librería V9780262182539

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 34,84
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Irlanda a Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Rasmussen, Carl Edward; Williams, Christopher K. I.
Editorial: MIT Press Ltd, United States (2006)
ISBN 10: 026218253X ISBN 13: 9780262182539
Nuevos Tapa dura Cantidad: 1
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd, United States, 2006. Hardback. Estado de conservación: New. 254 x 206 mm. Language: English . Brand New Book. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes. Nº de ref. de la librería AAU9780262182539

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 36,84
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Rasmussen, Carl Edward; Williams, Christopher K. I.
Editorial: MIT Press (2006)
ISBN 10: 026218253X ISBN 13: 9780262182539
Nuevos Cantidad: 2
Librería
Books2Anywhere
(Fairford, GLOS, Reino Unido)
Valoración
[?]

Descripción MIT Press, 2006. HRD. Estado de conservación: New. New Book. Shipped from UK in 4 to 14 days. Established seller since 2000. Nº de ref. de la librería BB-9780262182539

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 26,92
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 10,22
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Rasmussen, Carl Edward; Williams, Christopher K. I.
Editorial: MIT Press Ltd
ISBN 10: 026218253X ISBN 13: 9780262182539
Nuevos Tapa dura Cantidad: 2
Librería
Kennys Bookstore
(Olney, MD, Estados Unidos de America)
Valoración
[?]

Descripción MIT Press Ltd. Estado de conservación: New. 2005. Hardcover. A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Series: Adaptive Computation and Machine Learning Series. Num Pages: 266 pages, Illustrations. BIC Classification: PBW; UYQM. Category: (P) Professional & Vocational. Dimension: 261 x 212 x 18. Weight in Grams: 720. . . . . . Books ship from the US and Ireland. Nº de ref. de la librería V9780262182539

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 37,86
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Rasmussen, Carl Edward; Williams, Christopher K. I.
Editorial: MIT Press Ltd 2006-01-10, Cambridge, Mass. (2006)
ISBN 10: 026218253X ISBN 13: 9780262182539
Nuevos Tapa dura Cantidad: 1
Librería
Blackwell's
(Oxford, OX, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd 2006-01-10, Cambridge, Mass., 2006. hardback. Estado de conservación: New. Nº de ref. de la librería 9780262182539

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 35,08
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 5,11
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

7.

Rasmussen, Carl Edward; Williams, Christopher K. I.
Editorial: MIT Press Ltd
ISBN 10: 026218253X ISBN 13: 9780262182539
Nuevos Tapa dura Cantidad: 19
Librería
THE SAINT BOOKSTORE
(Southport, Reino Unido)
Valoración
[?]

Descripción MIT Press Ltd. Hardback. Estado de conservación: new. BRAND NEW, Gaussian Processes for Machine Learning, Carl Edward Rasmussen, Christopher K. I. Williams, Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes. Nº de ref. de la librería B9780262182539

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 33,76
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 6,75
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Rasmussen, Carl Edward; Williams, Christopher K. I.
ISBN 10: 026218253X ISBN 13: 9780262182539
Nuevos Cantidad: 5
Librería
GreatBookPrices
(Columbia, MD, Estados Unidos de America)
Valoración
[?]

Descripción Estado de conservación: New. Nº de ref. de la librería 4045473-n

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 38,55
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 2,49
A Estados Unidos de America
Destinos, gastos y plazos de envío

9.

Rasmussen, Carl Edward; Williams, Christopher K. I.
ISBN 10: 026218253X ISBN 13: 9780262182539
Nuevos Tapa dura Cantidad: 2
Librería
Ria Christie Collections
(Uxbridge, Reino Unido)
Valoración
[?]

Descripción Hardback. Estado de conservación: New. Not Signed; Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and prac. book. Nº de ref. de la librería ria9780262182539_rkm

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 41,05
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,79
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

10.

Rasmussen, Carl Edward; Williams, Christopher K. I.
Editorial: Mit Pr (2005)
ISBN 10: 026218253X ISBN 13: 9780262182539
Nuevos Tapa dura Cantidad: 1
Librería
English-Book-Service Mannheim
(Mannheim, Alemania)
Valoración
[?]

Descripción Mit Pr, 2005. Estado de conservación: New. Nº de ref. de la librería EA9780262182539

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 39,99
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 5,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda