A comprehensive introduction to the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications.
Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context.
After discussing the trajectory from data to insight to decision, the book describes four approaches to machine learning: information-based learning, similarity-based learning, probability-based learning, and error-based learning. Each of these approaches is introduced by a nontechnical explanation of the underlying concept, followed by mathematical models and algorithms illustrated by detailed worked examples. Finally, the book considers techniques for evaluating prediction models and offers two case studies that describe specific data analytics projects through each phase of development, from formulating the business problem to implementation of the analytics solution. The book, informed by the authors' many years of teaching machine learning, and working on predictive data analytics projects, is suitable for use by undergraduates in computer science, engineering, mathematics, or statistics; by graduate students in disciplines with applications for predictive data analytics; and as a reference for professionals.
"Sinopsis" puede pertenecer a otra edición de este libro.
John D. Kelleher is Academic Leader of the Information, Communication, and Entertainment Research Institute at Technological University Dublin. He is the coauthor of Data Science and the author of Deep Learning, both in the MIT Press Essential Knowledge series.
Brian Mac Namee is Associate Professor at the School of Computer Science at University College Dublin
Aoife D'Arcy is CEO of Krisolis, a data analytics company based in Dublin.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,05 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 25,85 gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
Paperback. Condición: Very Good. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged. Nº de ref. del artículo: GOR009433982
Cantidad disponible: 1 disponibles
Librería: Anybook.com, Lincoln, Reino Unido
Condición: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In good all round condition. Library sticker on front cover. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1100grams, ISBN:9780262029445. Nº de ref. del artículo: 5578491
Cantidad disponible: 1 disponibles
Librería: medimops, Berlin, Alemania
Condición: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Nº de ref. del artículo: M00262029448-V
Cantidad disponible: 1 disponibles
Librería: San Francisco Book Company, Paris, Francia
Hardcover. Condición: Very good. Hardcover Quarto. papered boards, 595 pp Standard shipping (no tracking or insurance) / Priority (with tracking) / Custom quote for large or heavy orders. Nº de ref. del artículo: 92297
Cantidad disponible: 1 disponibles
Librería: Labyrinth Books, Princeton, NJ, Estados Unidos de America
Condición: Acceptable. Nº de ref. del artículo: 215738
Cantidad disponible: 2 disponibles
Librería: BooksRun, Philadelphia, PA, Estados Unidos de America
Hardcover. Condición: Good. 1. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Nº de ref. del artículo: 0262029448-11-1
Cantidad disponible: 1 disponibles
Librería: SGS Trading Inc, Franklin Lakes, NJ, Estados Unidos de America
Hardcover. Condición: Good. Textbook, May Have Highlights, Notes and/or Underlining, BOOK ONLY-NO ACCESS CODE, NO CD, Ships with Emailed Tracking. Nº de ref. del artículo: UJune2019-262029448-1041
Cantidad disponible: 2 disponibles
Librería: online-buch-de, Dozwil, Suiza
Hardcover. Condición: gebraucht; wie neu. Hardcover, neuwertig, ungebraucht. Nº de ref. del artículo: 163-4-42
Cantidad disponible: 1 disponibles
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
Hardcover. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Nº de ref. del artículo: S_426942780
Cantidad disponible: 1 disponibles
Librería: Toscana Books, AUSTIN, TX, Estados Unidos de America
Hardcover. Condición: new. Excellent Condition.Excels in customer satisfaction, prompt replies, and quality checks. Nº de ref. del artículo: Scanned0262029448
Cantidad disponible: 1 disponibles