Artículos relacionados a Statistical Process Monitoring Using Advanced Data-Driven...

Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches: Theory and Practical Applications - Tapa blanda

 
9780128193655: Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches: Theory and Practical Applications

Sinopsis

Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches tackles multivariate challenges in process monitoring by merging the advantages of univariate and traditional multivariate techniques to enhance their performance and widen their practical applicability. The book proceeds with merging the desirable properties of shallow learning approaches - such as a one-class support vector machine and k-nearest neighbours and unsupervised deep learning approaches - to develop more sophisticated and efficient monitoring techniques.

Finally, the developed approaches are applied to monitor many processes, such as waste-water treatment plants, detection of obstacles in driving environments for autonomous robots and vehicles, robot swarm, chemical processes (continuous stirred tank reactor, plug flow rector, and distillation columns), ozone pollution, road traffic congestion, and solar photovoltaic systems.

  • Uses a data-driven based approach to fault detection and attribution
  • Provides an in-depth understanding of fault detection and attribution in complex and multivariate systems
  • Familiarises you with the most suitable data-driven based techniques including multivariate statistical techniques and deep learning-based methods
  • Includes case studies and comparison of different methods

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca de los autores

Fouzi Harrou received the M.Sc. degree in telecommunications and networking from the University of Paris VI, France, and the Ph.D. degree in systems optimization and security from the University of Technology of Troyes (UTT), France. He was an Assistant Professor with UTT for one year and with the Institute of Automotive and Transport Engineering, Nevers, France, for one year. He was also a Postdoctoral Research Associate with the Systems Modeling and Dependability Laboratory, UTT, for one year. He was a Research Scientist with the Chemical Engineering Department, Texas A&M University at Qatar, Doha, Qatar, for three years. He is actually a Research Scientist with the Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology. He is the author of more than 150 refereed journals and conference publications and book chapters. He is co-author of the book "Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches: Theory and Practical Applications" (Elsevier, 2020). Dr. Harrou’s research interests are in the area of statistical anomaly detection and process monitoring with a particular emphasis on data-driven, machine learning/deep learning methods. The algorithms developed in Dr. Harrou’s research are utilized in many applications to improve the operation of various environmental, chemical, and electrical systems.

Professor Ying Sun received her Ph.D. in Statistics from Texas A&M in 2011 followed by a two-year postdoctoral research position at the Statistical and Applied Mathematical Sciences Institute and at the University of Chicago. She was an Assistant Professor at the Ohio State University for a year before joining KAUST in 2014. At KAUST, Professor Sun established and leads the Environmental Statistics research group which works on developing statistical models and methods for complex data to address important environmental problems. She has made original contributions to environmental statistics, in particular in the areas of spatio-temporal statistics, functional data analysis, visualization, computational statistics, with an exceptionally broad array of applications. Professor Sun won two prestigious awards: the Early Investigator Award in Environmental Statistics presented by the American Statistical Association, and the Abdel El-Shaarawi Young Research Award from the International Environmetrics Society

Professor Amanda Hering obtained her Ph.D. from Texas A&M University in Statistics in 2009. She joined the Department of Applied Mathematics and Statistics at Colorado School of Mines in Golden, Colorado in 2009 as an Assistant Professor and was promoted to Associate Professor in 2016. She joined the Department of Statistical Science at Baylor University in the fall of 2016 as an Associate Professor. Her research interests are in modeling big, multivariate, spatial datasets; developing methods for categorical spatial data; and detecting outliers and faults for process and data control. She works with researchers whose data structures generate new statistical methodologies because either the goals or the size of the data presents a new challenge. She is an Associate Editor of Technometrics, Environmetrics, and Stat. She received the American Statistical Association’s Section on Statistics in the Environment Early Investigator Award in 2017.

Muddu Madakyaru is an Associate professor of Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, India. He received B.E. degree in Chemical Engineering and M.Tech. in Chemical plant Design from the R.V.C.E and National Institute of Technology Karnataka, India respectively. In the year 2010 he obtained his Ph.D degree in process control from Indian Institute of Technology, Bombay, India. Later he was involved in post-doctoral research at Texas A&M University, Doha, Qatar for four years. His research interests are in advanced process control, including, system identification, Fault detection and diagnosis, model predictive control and latent variable regression modeling using wavelets. He has published more than 20 papers in peer reviewed journals and 10 international conference proceedings papers. He is fellow of Institution of Engineers (India), Life Member of Indian Society for Technical Education and Indian Society of Systems for Science and Engineering (ISSE).

Dr. Abdelkader Dairi received the Engineer degree in computer science from the University of Oran 1 Ahmed Ben Bella, Algeria, in 2003. He also received the Magister degree in computer science from the National Polytechnic School of Oran, Algeria, in 2006. From 2007 to 2013 he was a senior Oracle database administrator (DBA) and enterprise resource planning (ERP) manager. He has over 20 years of programming experience in different languages and environments. In 2018 he received the Ph.D. degree in computer sciences from Ben Bella Oran1 University. His research interests include deep learning approach for autonomous robot navigation, computer vision, image processing, and mobile robotics.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialElsevier
  • Año de publicación2020
  • ISBN 10 0128193654
  • ISBN 13 9780128193655
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas328

Comprar usado

Condición: Como Nuevo
Unread book in perfect condition...
Ver este artículo

EUR 17,71 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 10,19 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Statistical Process Monitoring Using Advanced Data-Driven...

Imagen del vendedor

Harrou, Fouzi; Sun, Ying; Hering, Amanda S.; Madakyaru, Muddu; Dairi, Abdelkader
Publicado por Elsevier, 2020
ISBN 10: 0128193654 ISBN 13: 9780128193655
Antiguo o usado Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 41599032

Contactar al vendedor

Comprar usado

EUR 102,69
Convertir moneda
Gastos de envío: EUR 17,71
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Harrou, Fouzi; Sun, Ying; Hering, Amanda S.; Madakyaru, Muddu; Dairi, Abdelkader
Publicado por Elsevier, 2020
ISBN 10: 0128193654 ISBN 13: 9780128193655
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 262. Nº de ref. del artículo: 26377223395

Contactar al vendedor

Comprar nuevo

EUR 124,08
Convertir moneda
Gastos de envío: EUR 10,19
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Harrou, Fouzi; Sun, Ying; Hering, Amanda S.; Madakyaru, Muddu; Dairi, Abdelkader
Publicado por Elsevier, 2020
ISBN 10: 0128193654 ISBN 13: 9780128193655
Nuevo Tapa blanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 262. Nº de ref. del artículo: 369903420

Contactar al vendedor

Comprar nuevo

EUR 128,30
Convertir moneda
Gastos de envío: EUR 10,50
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Fouzi Harrou
ISBN 10: 0128193654 ISBN 13: 9780128193655
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches tackles multivariate challenges in process monitoring by merging the advantages of univariate and traditional multivariate techniques to enhance their performance and widen their practical applicability. The book proceeds with merging the desirable properties of shallow learning approaches - such as a one-class support vector machine and k-nearest neighbours and unsupervised deep learning approaches - to develop more sophisticated and efficient monitoring techniques. Finally, the developed approaches are applied to monitor many processes, such as waste-water treatment plants, detection of obstacles in driving environments for autonomous robots and vehicles, robot swarm, chemical processes (continuous stirred tank reactor, plug flow rector, and distillation columns), ozone pollution, road traffic congestion, and solar photovoltaic systems. Englisch. Nº de ref. del artículo: 9780128193655

Contactar al vendedor

Comprar nuevo

EUR 132,00
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Harrou, Fouzi; Sun, Ying; Hering, Amanda S.; Madakyaru, Muddu; Dairi, Abdelkader
Publicado por Elsevier, 2020
ISBN 10: 0128193654 ISBN 13: 9780128193655
Nuevo Tapa blanda

Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 41599032-n

Contactar al vendedor

Comprar nuevo

EUR 125,30
Convertir moneda
Gastos de envío: EUR 17,71
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Harrou, Fouzi; Sun, Ying; Hering, Amanda S.; Madakyaru, Muddu; Dairi, Abdelkader
Publicado por Elsevier, 2020
ISBN 10: 0128193654 ISBN 13: 9780128193655
Nuevo Tapa blanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 262. Nº de ref. del artículo: 18377223401

Contactar al vendedor

Comprar nuevo

EUR 129,64
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Harrou, Fouzi|Sun, Ying|Hering, Amanda S.|Madakyaru, Muddu|Dairi, abdelkader
ISBN 10: 0128193654 ISBN 13: 9780128193655
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches tackles multivariate challenges in process monitoring by merging the advantages of univariate and traditional multivariate techniques to enhance their performance . Nº de ref. del artículo: 352964532

Contactar al vendedor

Comprar nuevo

EUR 128,97
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Harrou, Fouzi/ Sun, Ying/ Hering, Amanda S./ Madakyaru, Muddu/ Dairi, Abdelkader
Publicado por Elsevier Science Ltd, 2020
ISBN 10: 0128193654 ISBN 13: 9780128193655
Nuevo Paperback
Impresión bajo demanda

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 262 pages. 8.75x5.75x1.00 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __0128193654

Contactar al vendedor

Comprar nuevo

EUR 140,13
Convertir moneda
Gastos de envío: EUR 11,87
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Fouzi Harrou
ISBN 10: 0128193654 ISBN 13: 9780128193655
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches tackles multivariate challenges in process monitoring by merging the advantages of univariate and traditional multivariate techniques to enhance their performance and widen their practical applicability. The book proceeds with merging the desirable properties of shallow learning approaches - such as a one-class support vector machine and k-nearest neighbours and unsupervised deep learning approaches - to develop more sophisticated and efficient monitoring techniques. Finally, the developed approaches are applied to monitor many processes, such as waste-water treatment plants, detection of obstacles in driving environments for autonomous robots and vehicles, robot swarm, chemical processes (continuous stirred tank reactor, plug flow rector, and distillation columns), ozone pollution, road traffic congestion, and solar photovoltaic systems. Nº de ref. del artículo: 9780128193655

Contactar al vendedor

Comprar nuevo

EUR 145,00
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Harrou, Fouzi; Sun, Ying; Hering, Amanda S.; Madakyaru, Muddu; Dairi, Abdelkader
Publicado por Elsevier, 2020
ISBN 10: 0128193654 ISBN 13: 9780128193655
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9780128193655_new

Contactar al vendedor

Comprar nuevo

EUR 173,69
Convertir moneda
Gastos de envío: EUR 4,72
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Existen otras 3 copia(s) de este libro

Ver todos los resultados de su búsqueda