Artículos relacionados a Optimization Techniques in Statistics (Statistical...

Optimization Techniques in Statistics (Statistical Modeling and Decision Science) - Tapa dura

 
9780126045550: Optimization Techniques in Statistics (Statistical Modeling and Decision Science)

Sinopsis

Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods. The text features numerous applications, including:Finding maximum likelihood estimatesMarkov decision processesProgramming methods used to optimize monitoring of patients in hospitalsDerivation of the Neyman-Pearson lemmaThe search for optimal designsSimulation of a steel millSuitable as both a reference and a text, this book will be of interest to advanced undergraduate or beginning graduate students in statistics, operations research, management and engineering sciences, and related fields. Most of the material can be covered in one semester by students with a basic background in probability and statistics.

"Sinopsis" puede pertenecer a otra edición de este libro.

Críticas

It is well written, nicely organized, with a high degree of mathematical accuracy...all coming together to make the material easily digestible.--Stergios B. Fotopoulos, Washington State University

Reseña del editor

The mathematical techniques of optimization are fundamental to statistical theory and practice. This volume covers these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods. The text features various applications, including: estimates of maximum likelihood; Markov decision processes; programming methods used to optimize monitoring of patients in hospitals; the derivation of the Neyman-pearson lemma; the search for optimal designs; and the simulation of a steel mill.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Aceptable
Former library book; Pages can...
Ver este artículo

EUR 9,25 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781493307425: Optimization Techniques in Statistics

Edición Destacada

ISBN 10:  1493307428 ISBN 13:  9781493307425
Editorial: Academic Press, 2014
Tapa blanda

Resultados de la búsqueda para Optimization Techniques in Statistics (Statistical...

Imagen de archivo

Jagdish S. Rustagi
Publicado por Academic Press, 1994
ISBN 10: 0126045550 ISBN 13: 9780126045550
Antiguo o usado Tapa dura

Librería: ThriftBooks-Dallas, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Good. No Jacket. Former library book; Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 1.45. Nº de ref. del artículo: G0126045550I3N10

Contactar al vendedor

Comprar usado

EUR 26,62
Convertir moneda
Gastos de envío: EUR 9,25
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito