Managing Quality: The Strategic and Competitive Edge

4 valoración promedio
( 1 valoraciones por Goodreads )
 
9780029113806: Managing Quality: The Strategic and Competitive Edge

Compares American and Japanese quality management, pinpoints weaknesses in American production, and argues for a more sophisticated understanding of quality which can improve the competitive position of U.S. companies

"Sinopsis" puede pertenecer a otra edición de este libro.

About the Author:

David A. Garvin teaches at the Harvard Business School and is a two-time winner of the annual McKinsey Award for the best Harvard Business Review article. He lectures widely on the management of quality to managers in both the private and public sectors.

Excerpt. © Reprinted by permission. All rights reserved.:

Chapter 1

History and Evolution

As a concept, quality has been with us for millennia. Only recently has it emerged as a formal management function. The discipline is still evolving. In its original form, it was reactive and inspection-oriented; today, quality-related activities have broadened and are seen as essential for strategic success. Once the exclusive province of manufacturing and operations departments, quality now embraces functions as diverse as purchasing, engineering, and marketing research, and commands the attention of chief executive officers.

How have these changes come about? Most modern approaches to quality have emerged gradually, arriving through steady evolution rather than dramatic breakthroughs. They are the product of a series of discoveries stretching back over a century. In the United States, these discoveries can be organized into four distinct "quality eras": inspection, statistical quality control, quality assurance, and strategic quality management. The first three are discussed in this chapter; the fourth, a more recent innovation, is reserved for Chapter 2.

THE RISE OF INSPECTION

In the eighteenth and nineteenth centuries, quality control as we know it today did not yet exist. Most manufacturing was performed by artisans and skilled craftsmen or by journeymen and apprentices who were supervised by masters at the trade. Goods were produced in small volumes; parts were matched to one another by hand, and after-the-fact inspection to ensure high quality was conducted informally, if at all. A well-performing product was viewed as the natural outgrowth of reliance on skilled tradesmen for all aspects of design, manufacturing, and service.

Formal inspection became necessary only with the rise of mass production and the need for interchangeable parts. As volumes increased, parts could no longer be fitted to one another by hand: The process required a large pool of skilled labor and was both costly and time-consuming. Prices were often beyond the reach of the average consumer, especially for machinery and equipment. Nor was the federal government able to purchase large quantities of high-quality firearms at low cost.

These pressures gave rise to what has been called the American system of manufacturing: the use of special-purpose machinery to produce interchangeable parts by following a preestablished sequence of operations. Most initial efforts were connected with the military's demand for armaments and were closely coordinated by the United States Ordnance Department, the national armory at Springfield, Massachusetts, and the Harpers Ferry Armory. In consumer products, the Singer Company, which manufactured sewing machines, and the McCormick Harvesting Company, which made farm equipment, later adopted the same techniques.

From a quality control standpoint, the key breakthrough was the development of a rational jig, fixture, and gauging system in the early 1800s. Jigs and fixtures are devices that position tools or hold parts while they are being worked on, keeping them fixed to the equipment so that machining operations can be performed accurately and precisely. Since every part that is worked on is held in place in exactly the same way -- all jigs and fixtures having been designed from a standard model of the product to be manufactured -- a high degree of interchangeability is assured. Nevertheless, parts may still deviate from one another: They may have been mounted improperly during machining, built from imperfect raw materials, or made on worn tooling. To minimize problems at final assembly, when parts are matched together for the first time, accurate inspection is required during the process of manufacture. A system of gauges is often used for that purpose; like jigs and fixtures, gauges are based on a standard model of the product to ensure uniformity.

By 1819, an elaborate gauging system was in place at the Springfield Armory. It gave inspection a new respectability, for activities that were previously conducted by eye were replaced by a more objective, verifiable process. Two inspectors using a gauge were much more likely to reach the same result than two who were relying on personal judgment alone.

As the American system of manufacturing matured, gauging became more refined, and inspection became even more important. In the early 1900s, Frederick W. Taylor, the father of "scientific management," gave the activity added legitimacy by singling it out as an assigned task for one of the eight functional bosses (foremen) required for effective shop management:

The inspector is responsible for the quality of the work, and both the workmen and the speed bosses [who see that the proper cutting tools are used, that the work is properly driven, and that cuts are started in the right part of the piece] must see that the work is finished to suit him. This man can, of course, do his work best if he is a master of the art of finishing work both well and quickly.

Inspection activities were linked more formally to quality control in 1922, with the publication of G. S. Radford's The Control of Quality in Manufacturing. For the first time, quality was viewed as a distinct management responsibility and as an independent function. The book even touched on a number of principles regarded as central to modern-day quality control: the need to get designers involved early in quality activities, the need for close coordination among the various departments affecting quality, and the association of quality improvement with increased output and lower costs. Its primary focus, however, was inspection. Nine of the book's twenty-three chapters were devoted to that subject alone. Topics included the purpose of inspection (to "exercise the duty of viewing the work closely and critically so as to ascertain the quality, detect the errors, and present them to the attention of the proper persons in such a way as to have the work brought up to standard");9 the evolution of inspection (from visual to dimensional checks); types of inspection (material, office, tool, and process); sampling methods (including 100 percent and random sampling, but without any statistical foundation); gauging techniques; and the organization of the inspection department. Throughout, the emphasis was on conformance and its link with inspection; according to Radford, the purchaser's "principal interest in quality [was] that evenness or uniformity which results when the manufacturer adheres to his established requirements."

Here matters stood for several years. Quality control was limited to inspection and to such narrow activities as counting, grading, and repair. Troubleshooting was considered beyond the reach of the average inspection department. In the next decade, however, the role of the quality professional would be redefined. The stimulus for change was research conducted at Bell Telephone Laboratories; the result was what is today called statistical quality control.

STATISTICAL QUALITY CONTROL

The year 1931 marked a watershed for the quality movement. W. A. Shewhart's Economic Control of Quality of Manufactured Product was published that year, giving the discipline a scientific footing for the first time. Much of modern-day quality control can be traced to that single volume. In it, Shewhart gave a precise and measurable definition of manufacturing control, developed powerful techniques for monitoring and evaluating day-to-day production, and suggested a variety of ways of improving quality.

Shewhart was in fact part of a larger group at Bell Telephone Laboratories that was investigating problems of quality. The group's research was prompted by the concerns of engineers at Western Electric, the manufacturing arm of the Bell System, who were seeking greater standardization and uniformity in the nationwide telephone network. Mo

"Sobre este título" puede pertenecer a otra edición de este libro.

Los mejores resultados en AbeBooks

1.

Garvin, David A.
Editorial: Free Press (1988)
ISBN 10: 0029113806 ISBN 13: 9780029113806
Nuevos Tapa dura Cantidad: 2
Librería
Murray Media
(North Miami Beach, FL, Estados Unidos de America)
Valoración
[?]

Descripción Free Press, 1988. Hardcover. Estado de conservación: New. Never used!. Nº de ref. de la librería P110029113806

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 32,03
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 1,68
A Estados Unidos de America
Destinos, gastos y plazos de envío

2.

David A. Garvin
Editorial: Free Press (1988)
ISBN 10: 0029113806 ISBN 13: 9780029113806
Nuevos Tapa dura Primera edición Cantidad: 1
Librería
Irish Booksellers
(Rumford, ME, Estados Unidos de America)
Valoración
[?]

Descripción Free Press, 1988. Hardcover. Estado de conservación: New. book. Nº de ref. de la librería M0029113806

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 39,99
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Garvin, David A.
Editorial: Free Press
ISBN 10: 0029113806 ISBN 13: 9780029113806
Nuevos Tapa dura Cantidad: 1
Librería
Cloud 9 Books
(Wellington, FL, Estados Unidos de America)
Valoración
[?]

Descripción Free Press. Hardcover. Estado de conservación: New. 0029113806 New Condition. Nº de ref. de la librería NEW7.0943429

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 52,14
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 4,21
A Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Garvin, David A.
Editorial: Free Press
ISBN 10: 0029113806 ISBN 13: 9780029113806
Nuevos Tapa dura Cantidad: 4
Librería
Diafan Media
(Geneva, IL, Estados Unidos de America)
Valoración
[?]

Descripción Free Press. Hardcover. Estado de conservación: New. 0029113806 New Condition *** Right Off the Shelf | Ships within 2 Business Days ~~~ Customer Service Is Our Top Priority! - Thank you for LOOKING :-). Nº de ref. de la librería 2BOOK2P153969

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 56,28
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 4,18
A Estados Unidos de America
Destinos, gastos y plazos de envío

5.

David A. Garvin
Editorial: Free Press (1988)
ISBN 10: 0029113806 ISBN 13: 9780029113806
Nuevos Tapa dura Cantidad: 1
Librería
Ergodebooks
(RICHMOND, TX, Estados Unidos de America)
Valoración
[?]

Descripción Free Press, 1988. Hardcover. Estado de conservación: New. Nº de ref. de la librería DADAX0029113806

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 119,58
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 4,21
A Estados Unidos de America
Destinos, gastos y plazos de envío